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Abstract

Safe Implementation (Gavan and Penta, 2025) combines standard implementation
with the requirement that the implementing mechanism is such that, if up to k agents
deviate from the relevant solution concept, the outcomes that are induced are still
‘acceptable’ at every state of the world. In this paper, we study Safe Implementation
of social choice correspondences in mixed Nash Equilibrium. We identify a condition,
Set-Comonotonicity, which is both necessary and (under mild domain restrictions)
almost sufficient for this implementation notion.

Keywords: Set-Comonotonicity, Implementation, Mechanism Design, Mixed Imple-
mentation, Robustness, Safe Implementation

JEL Codes: C72; D82.

*We thank Ritesh Jain and Michele Lombardi for their feedback.The BSE acknowledges financial support
from the Spanish Ministry of Economy and Competitiveness, through the Severo Ochoa Programme for
Centres of Excellence in R&D (CEX2024-001476-S)

†email: Anand.Chopra@liverpool.ac.uk.
‡email: malachy.gavan@liverpool.ac.uk.
§email: antonio.penta@upf.edu.

1

mailto:Anand.Chopra@liverpool.ac.uk
mailto:malachy.gavan@liverpool.ac.uk
mailto:antonio.penta@upf.edu


1 Introduction

Implementation theory studies which social outcomes may ensue as the result of the strate-
gic interaction of rational individuals. The central question is whether, for a given set
of agents and states of the world, it is possible to construct a mechanism where, at each
state, the set of equilibrium outcomes coincides with the designer’s objectives, represented
as a Social Choice Correspondence (SCC). Since Maskin’s seminal contributions (1977;
1999), traditional models assume that the designer can freely assign outcomes both on and
off the equilibrium path, including imposing arbitrary punishments if agents deviate. In
many contexts, however, such flexibility may not be realistic. The designer’s ability to
punish deviations may be restricted, for instance, due to institutional, ethical, or informa-
tional considerations. Moreover, deviations from equilibrium may occur due to mistakes,
bounded rationality, or misspecified uncertainties about the environment. In these cases,
the designer want to pursue implementation with a mechanism that ‘performs well’ even if
these events materialize.

These observations motivated Gavan and Penta (2025)’s notion of Safe Implementation,
whereby the designer specifies not only a Social Choice Correspondence (SCC), to be
induced by the equilibrium outcomes, but also an Acceptability Correspondence, which
restricts the outcomes of the mechanism if a bounded number of agents deviates from the
equilibrium. Gavan and Penta (2025) study Safe Implementation in pure Nash equilibrium,
and identify necessary and sufficient conditions (Comonotonicity and Safe No-Veto) that
generalize the analogous conditions for (non safe) Nash Implementation (Maskin (1977)).1

In this paper, we extend the analysis to general (i.e., pure or mixed) Nash equilibrium,
following the ordinal approach of Mezzetti and Renou (2012), who require robustness
across different cardinal representations of agents’ preferences: rather than fixing a par-

1Comonotonicity restricts the joint behavior of the SCC and acceptability correspondence, and it coincides
with Maskin monotonicity when the acceptability correspondence is vacuous, in the sense of allowing all
allocations at all states. Formally, the closest condition in the earlier literature is that of extended monotonicity
(Bochet and Maniquet, 2010), which characterizes virtual implementation where stochastic mechanisms are
permitted, with support restrictions (Bochet and Maniquet, 2010), and which restricts the joint behaviour of
the SCC and the (state dependent) support, in a similar fashion to the joint restriction that Comonotonicity
imposes on the SCC and the acceptability correspondence.
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ticular von-Neumann Morgenstern (vNM) utility function over deterministic outcomes,
Mezzetti and Renou (2012) require that the implementing mechanisms achieve perform
well for all cardinal representations that are consistent with the underlying ordinal prefer-
ences over certain outcomes.

Incorporating this requirement into the Safe Implementation framework presents addi-
tional challenges, as safety must be maintained uniformly across all such cardinal repre-
sentations. To pin things down, a mechanism is said to (A, k)-Safely Implement a SCC if,
at every state and for every cardinal representation of the underlying preferences over cer-
tain outcomes, the set of (pure or mixed) Nash equilibrium outcomes coincides with those
admitted by the SCC, and any deviation by up to k players leads to an outcome within the
Acceptability Correspondence. This definition generalises both standard mixed implemen-
tation and the Safe Implementation framework of Gavan and Penta (2025) to environments
where agents may randomise.

Our main results identify a condition which is both necessary and ‘almost sufficient’
for Safe Implementation in mixed Nash equilibrium. This condition, which we call Set-
Comonotonicity, restricts the joint behavior of the the SCC and the Acceptability Corre-
spondence. Informally, Set-Comonotonicity requires that, when moving from one state to
another, both the SCC and acceptability correspondence at the second state must include
all of alternatives included at the first state, whenever one of the following two conditions
hold: (i) the alternatives selected by the SCC at the first state are also top-ranked at the
second state, for all agents, among all the alternatives that are acceptable at the first state;
or (ii) for each alternative included in the SCC at the first state, all allocations that are
weakly or strictly worse at the frist state, among those that are acceptable at that state,
remain weakly and strictly worse within the same set, also according to the preferences
at the second state, for all agents. This notion generalises Mezzetti and Renou (2012)’s
Set-Monotonicity, and it is weaker than Gavan and Penta (2025)’s Comonotonicity, which
in turn generalizes Maskin monotonicity.

In Theorem 1 we establish necessity of Set-Comonotonicity. Then, in Theorem 2, we
show that when Set-Comonotonicity is combined with a Safe No-Veto condition, under
mild domain restrictions, then (A, k)-Safe Mixed Nash Implementation is possible for any
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k lower than half the total number of agents.

To further examine some key implications of these results, we turn to some applica-
tions, and obtain both possibility and impossibility results. In particular, first we show
that while the strong Pareto correspondence is implementable on the domain of single-top
preferences in mixed Nash equilibrium (Mezzetti and Renou, 2012), it is not Safely Im-
plementable for any non-vacuous acceptability correspondence. Similarly, on the domain
of strict preferences, the top-cycle correspondence is mixed Nash implementable (Mezzetti
and Renou, 2012), but it is not Safely Implementable for any non-vacuous acceptability
correspondence.

On the other hand, we construct interesting and economically relevant rules that are not
implementable in Nash equilibrium (and therefore not Safe Nash Implementable for any
acceptability correspondence), and yet are implementable under Safe mixed Nash equi-
librium. Specifically, we consider a social choice rule defined over a domain of single-
peaked preferences that extends the top-cycle correspondence to address fairness concerns.
On such a domain, the top-cycle correspondence selects the most preferred alternatives of
the median-peaked individual, which can be seen as making no concessions to those who
favour “lower” or “higher” allocations. In contrast, our proposed rule introduces a fairness
adjustment: In order to curb the ‘tyranny of the median’ entailed by the baseline Condorcet
rule, we allow some concessions to the groups to the left and right-neighborhood of the
median voter to increase the fairness of the resulting allocation. We show that, while this
modified rule is not implementable in Nash equilibrium, it is Safe (mixed) Nash Imple-
mentable for an Acceptability Correspondence that excludes alternatives lower than the
lowest peak and higher than the highest peak, when the median peak remains unchanged.

The rest of the paper is organised as follows. In section 2 we introduce the model and
the key definitions. In section 3.1 we provide a number of necessary conditions related to
Set-Comonotonicity. We then turn to sufficiency in section 3.2. Applications are considered
in section 4, before turning to the related literature in section 5. Section 6 concludes.
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2 Model

An environment is given by ⟨N,X,Θ⟩ where N = {1, 2, ..., n} is a finite set of agents, X
a finite set of alternatives, and Θ a finite set of states of the world. Each state is associated
with a preference profile ≿θ= (≿θ

1, ...,≿
θ
n) where ≿θ

i is player i’s preference relation over
X at state θ. As usual, we let x ≻θ

i y if and only if x ≿θ
i y but not y ≿θ

i x, interpreted
as the strict preference. An environments has strict preferences if there is no state θ ∈ Θ

where some agent is indifferent between any two alternatives.

We denote the lower contour set of an alternative x at state θ for player i by Li(x, θ) :=

{y ∈ X|x ≿θ
i y} and the strict lower contour set as SLi(x, θ) := {y ∈ X|x ≻θ

i y}. For
B ⊆ X , let maxθi B := {x ∈ B|x ≿θ

i y,∀y ∈ B}.

It is assumed that any preference relation ≿θ
i can be represented by a cardinal utility

function ui(·, θ) : X → R. U θ
i is the set of all possible cardinal representations at state θ for

agent i. The set of all possible cardinal representations for all players at θ is U θ = ×i∈NU θ
i .

A social choice correspondence F : Θ → 2X\{∅} selects a non-empty set of alternatives
for each state of the world. For any subset Y ⊆ X , let ∆(Y ) denote the set of all probability
measures over Y .

A (possibly stochastic) mechanism is a pair ⟨(Mi)i∈N , g⟩ where Mi is the set of messages
available to agent i and g : ×i∈NMi → ∆(X) is the (possibly random) outcome function.
As standard, we let M = ×i∈NMi and M−i = ×i ̸=jMj . Mixed strategies are denoted by
σi ∈ ∆(Mi), and their profiles as σ = (σi)i∈N and σ = (σ−j)j∈N\{i}. The probability that
m ∈ M is realised, given mixed strategy profile σ, is denoted by σ(m).

Given a mechanism M = ⟨(Mi)i∈N , g⟩, a state θ, and a cardinal representation (ui(·, θ))i∈N
of (≿θ

i )i∈N , the expected utility of an agent when playing mi ∈ Mi, while her opponents
play m−i ∈ M−i is given by:

Ui(g(mi,m−i), θ) =
∑
x∈X

g(mi,m−i)[x] · ui(x, θ)

where g(mi,m−i)[x] denotes the probability that x is chosen by the mechanism when
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the profile of messages is (mi,m−i). This induces a strategic form game of G(θ, u) =

⟨N, (Mi, Ui(g(·), ·), θ)i∈N⟩. Given a mixed strategy profile σ, we let P (σ, g) denote the
probability distribution over alternatives induced by the outcome function g and by σ. That
is, P (σ, g)[x] =

∑
m∈M σ(m) · g(m)[x] when M is countable and similarly expressed via

integrals when uncountable. Let CM(θ, u) ⊆ ×i∈N∆(Mi) denote the set of (mixed) Nash
equilibria of M when the cardinal representation of the preference profile at each state θ is
given by u(·, θ).

Next we introduce the primitives required for Safe Implementation. As in Gavan and
Penta (2025), to account for Safety concerns, we introduce an acceptability correspondence
that dictates which outcomes can be used by the designer when up to k players do not play
as expected at each state.

Formally, let A : Θ → 2X \ {∅}, where A(θ) denotes the set of outcomes that the social
planner deems acceptable at state θ. We maintain a natural requirement throughout the
paper that F (θ) ⊆ A(θ) for all θ ∈ Θ.2

Let k ∈ {1, . . . , n} represent the safety threshold the designer intends to enforce. This
threshold specifies the maximum number of agents who may deviate from any given equi-
librium σ∗ ∈ CM(θ, u) while still requiring the mechanism to produce outcomes within
A(θ), for every θ. To this end, for each k, define Nk as the collection of all subsets of N
with exactly k members (i.e., Nk := {C ⊆ 2N : |C| = k}). Take the distance metric
dN(σ, σ

′) := |{i ∈ N : σi ̸= σ′
i}| and a neighbourhood

Bk(σ) := {σ′ ∈ ×i∈N∆(Mi) : dN(σ, σ
′) ≤ k},

which consists of the set of mixed strategy profiles σ′ that differ from σ for at most k
agents. A∗ : Θ → 2X \ {∅} is a sub-correspondence of A : Θ → 2X \ {∅} if it is such that
A∗(θ) ⊆ A(θ) for all θ ∈ Θ.

With this, (A, k)-Safe Mixed Implementation adds Safety concerns to the mixed Nash
implementation of Mezzetti and Renou (2012), and is defined as follows:

2In fact, it will be immediately implied as a necessary condition for the following definition of implemen-
tation.
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Definition 1 ((A, k)-Safe Mixed Implementation). The mechanism ⟨(Mi)i∈N , g⟩ (A, k)-
Safe Mixed Implements the social choice correspondence F if for all θ ∈ Θ, for all cardinal
representations u(·, θ) ∈ U θ of ≿θ

i , the following conditions hold:

1. For each x ∈ F (θ) there exists a mixed Nash equilibrium σ∗ ∈ CM(θ, u) such that x
is in the support of P (σ∗, g),

2. For any mixed Nash equilibrium σ∗ ∈ CM(θ, u), it holds that:

(a) the support of P (σ∗, g) is included in F (θ), and

(b) for all σ ∈ Bk(σ
∗) the support of P (σ, g) is included in A(θ).

Furthermore, if A : Θ → 2Θ \{∅} admits no sub-correspondence A′ for which (A′, k)-Safe
Mixed Implementation of F is possible, then we say that A is Maximally Safe.

The notion of Safe Implementation allows for a rich set of interpretations and can en-
compass, amongst others: limited commitment of the designer, robustness to mistakes in
play of the agents, state-dependent feasibility restrictions, direct safety concerns of the de-
signer. To illustrate some of these and the expressive power of the model, we next provide
some examples of natural acceptability correspondences (see Gavan and Penta (2025) for
further details).

Some Examples of Acceptability Correspondences

1. Minimal Planner Welfare Guarantee: If the SCC can be seen as the maximisation
of the planner’s objective function, say W : X × Θ → R, it is natural to think of
the acceptability correspondence selecting outcomes that are above some minimal
level of welfare the planner wants to ensure even in case of deviations. That is,
A(θ) = {x ∈ X|W (x, θ) ≥ W̄ (θ)} for some W̄ (θ).

2. Pareto Interval: When a space of outcomes can be ordered and preferences are
single-peaked, a natural acceptability correspondence would be to select the out-
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comes between the two most extreme peaks. Therefore, even deviations cannot lead
to inefficient outcomes.3

3. Perfect Safety: Another appealing acceptability correspondence is to say that only
the outcomes selected by the SCC are acceptable. Specifically, A(θ) = F (θ) for
all θ ∈ Θ. This is the most demanding form of Safety. In the case of social choice
functions, i.e. |F (θ)| = 1 for all θ ∈ Θ, Gavan and Penta (2025) show that perfect
safety implies a constant rule.

4. State Dependent Feasibility: It is natural that in some cases the set of alternatives
that is available is itself state dependent. In this sense, it may not be possible to
use certain outcomes to incentivise behaviour at certain states, but not in others.
By allowing the acceptable outcomes at a state to only be those outcomes that are
feasible at that state, this framework can accommodate this.4

Also note that (A, k)-Safe Mixed Implementation generalizes the notion of Mezzetti and
Renou (2012), which obtains for the special case where the acceptability restriction is vac-
uous in the sense that A(θ) = X for all θ ∈ Θ. Outside of this case, the Safety requirement
makes the notion of implementation more demanding. Hence, the necessary condition
identified by Mezzetti and Renou (2012) are also necessary for our notion, whereas the
sufficient conditions that we will provide in Section 3.2 will also be sufficient for imple-
mentation à la Mezzetti and Renou (2012).

Finally, this notion is monotonic in two ways: first, for any k, if k′ < k and F is (A, k)-
Safely Mixed Implementable then it is also (A, k′)-Safely Mixed Implementable. Second,
if a SCC is (A, k)-Safe Mixed Implementable, then it is (Â, k)-Safe Mixed Implementable
for any ‘less stringent’ correspondence, Â : Θ → 2X \ {∅}, such that A(θ) ⊆ Â(θ) for
all θ ∈ Θ. This is the reason for introducing the notion of Maximally Safe acceptability
correspondence: if A is maximally safe in the sense of Definition 1, then A describes the

3Section 4 will consider a version of this acceptability correspondence where the interval is the most
extreme peaks for any state where the median peak leads is the same.

4Postlewaite and Wettstein (1989) have previously considered state dependent feasibility for implementa-
tion in a Walrasian economy.
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most stringent safety requirements that can be attained, since safe implementation would
be impossible for any sub-correspondence of A.

2.1 Related Definitions and Discussion of Model

In this subsection we discuss the main results and definitions from both the implementation
in mixed Nash equilibrium (without safety concerns) from Mezzetti and Renou (2012), and
the conditions for Safe (pure) Nash Implementation in Gavan and Penta (2025). These will
provide natural benchmarks for the results presented in the remainder of the paper.

The next condition, Set-Monotonicity, is necessary for mixed Nash implementation, ab-
sent safety concerns (Mezzetti and Renou, 2012).

Definition 2 (Set-Monotonicity (Mezzetti and Renou, 2012)). F satisfies Set-Monotonicity
if, for any θ, θ′, F (θ) ⊆ F (θ′) whenever for all i ∈ N one of the following holds:

1. F (θ) ⊆ maxθ
′

i X , or

2. for all x ∈ F (θ):

(a) Li(x, θ) ⊆ Li(x, θ
′) and

(b) SLi(x, θ) ⊆ SLi(x, θ
′).

Set-Monotonicity is a relaxation of Maskin monotonicity, which is necessary for (non-
mixed) Nash Implementation. Intuitively, as the state transitions from θ to θ′, Set-Monotonicity
requires that the set F (θ′) includes F (θ) only if, for all players, all alternatives in F (θ) ei-
ther are all top-ranked at θ′ or do not move down in the weak or strict rankings. In contrast,
Maskin monotonicity demands that F (θ′) include each individual alternative x ∈ F (θ) that
does not move down in any player’s weak ranking when moving from θ to θ′.

Together with a classical No-Veto condition, which requires that if all but one agent agree
that an outcome is top-ranked at a state then it must be implemented, Mezzetti and Renou
(2012) show that Set-Monotonicity is also sufficient for mixed Nash implementation when
there are three or more agents.
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Turning next to the Safety considerations, consider the following definition:

Definition 3 (Weak Comonotonicity (Gavan and Penta, 2025)). A SCC, F : Θ → 2X \{∅},
and an acceptability correspondence, A : Θ → 2X \ {∅}, are weakly Comonotonic if both
of the following requirements hold:

1. If θ, θ′ ∈ Θ and x ∈ F (θ) are such that Li(x, θ) ∩ A(θ) ⊆ Li(x, θ
′) ∩ A(θ) for all

i ∈ N , then x ∈ F (θ′).

2. If θ, θ′ ∈ Θ are such that, ∀x ∈ F (θ), Li(x, θ) ∩ A(θ) ⊆ Li(x, θ
′) ∩ A(θ) for all

i ∈ N , then A(θ) ⊆ A(θ′).

Gavan and Penta (2025) show that weak Comotonicity is a necessary condition for Maxi-
mally Safe Nash Implementation. Weak Comotonicity requires that, whenever an outcome,
x, is selected by the SCC at θ, if within the set of acceptable outcomes at θ any outcome
that was weakly worse than x at θ remains weakly worse at θ′, then x must also be within
the SCC at θ′. Further, if all outcomes in the SCC at θ only rise in the rankings between θ

and θ′, then all the outcomes that are acceptable at θ must also be acceptable at θ′.

Conversely, Gavan and Penta (2025) show that, along with a No-Veto condition adapted
for Safety concerns, a stronger Comonotonicity condition is sufficient for Safe (non-mixed)
Nash Implementation when n ≥ 3.

Definition 4 (Strong Comonotonicity (Gavan and Penta, 2025)). A SCC, F : Θ → 2X\{∅},
and an acceptability correspondence, A : Θ → 2X \{∅}, are strongly Comonotonic if both
of the following requirements hold:

1. If θ, θ′ ∈ Θ and x ∈ F (θ) are such that Li(x, θ) ∩ A(θ) ⊆ Li(x, θ
′) ∩ A(θ) for all

i ∈ N , then x ∈ F (θ′).

2. If θ, θ′ ∈ Θ are such that, ∃x ∈ F (θ), Li(x, θ) ∩ A(θ) ⊆ Li(x, θ
′) ∩ A(θ) for all

i ∈ N , then A(θ) ⊆ A(θ′).

Note that the only difference between the Strong and Weak Comonotonicity lies in the
requirement on the acceptability correspondence between states, in point 2 of the two def-
initions. In Strong Comonotonicity, if even one of the outcomes within the SCC at a state
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θ has weakly ‘risen’ in the preference rankings of the acceptable outcomes at θ′, then the
outcomes that were acceptable at θ must also be acceptable at θ′. Weak Comonotonicity, in
contrast, requires inclusion only if the previous comparison holds for all outcomes within
the SCC at state θ.

3 Main Results

In this section we provide the main results of the paper, which uncover general necessary
and sufficient conditions for Safe Mixed Implementation. To this end, consider the follow-
ing definition, which is the central notion for our main results:

Definition 5 (Set-Comonotonicity). An SCC and Acceptability Correspondence, (F,A),
satisfy Set-Comonotonicity if, for any θ, θ′ we have that (i) F (θ) ⊆ F (θ′) and (ii) A(θ) ⊆
A(θ′) whenever for all i ∈ N one of the following holds:

1. F (θ) ⊆ maxθ
′

i A(θ), or

2. for all x ∈ F (θ):

(a) Li(x, θ) ∩ A(θ) ⊆ Li(x, θ
′) ∩ A(θ) and

(b) SLi(x, θ) ∩ A(θ) ⊆ SLi(x, θ
′) ∩ A(θ).

Set-Comonotonicity is interpreted as follows. Suppose that there are two states of the
world, θ and θ′. For every agent, consider all the alternatives selected by the SCC at
θ. These alternatives must either be top-ranked at θ′ among those that are acceptable
at θ, or the following condition must hold: For every outcome selected by the SCC at
θ, every acceptable outcome at θ that was considered strictly (or weakly) worse than an
SCC-selected alternative must preserve that strict (or weak) ranking at θ′. If either of
these conditions are met for each agent, then two conclusions follow. First, all outcomes
implemented at θ must also be implemented at θ′. Second, all outcomes acceptable at θ
must also be acceptable at θ′.
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Note that this is a generalisation of the definition of Set-Monotonicity of Mezzetti and
Renou (2012), and whenever the acceptability correspondence is trivial, A(θ) = X for
all θ ∈ Θ, Set-Comonotonicity coincides with Set-Monotonicity. However, it is gener-
ally more demanding. In comparison to Gavan and Penta (2025)’s Comonotonicity (ei-
ther strong or weak), instead, Set-Comonotonicity is weaker: To se this, note that weak
Comonotonicity is weaker than strong Comonotonicity, and that Set-Comonotonicity im-
plies weak Comonotonicity.

3.1 Necessity

We now turn to providing the main result on necessity. As Definition 1 becomes more
demanding as the acceptability correspondence becomes finer, it is natural to consider the
most stringent notion of Safety, and hence focus on Maximal Safety. The next result shows
that Set-Comonotonicity is necessary for Maximally Safe Mixed Implementation:

Theorem 1. If a social choice correspondence F is Maximally (A, k)-Safely Implementable
in mixed Nash equilibrium, then (F,A) satisfies Set-Comonotonicity.

This theorem is implied by the following proposition, which provides a necessary con-
dition outside of the case of Maximal Safety.

Proposition 1. If a social choice correspondence F is (non-maximally) (A, k)-Safely Im-
plementable in mixed Nash equilibrium, then there exists some subcorrespondence of A,
A′, for which (F,A′) satisfies Set-Comonotonicity.

The proofs are relegated to the appendix.

It is worth pointing out that, due to nature of set inclusion, the following corollary ap-
plies, stating that condition (1) of Set-Comonotonicity, which puts restrictions on the SCC,
is necessary without restricting attention to the case of maximal safety.

Corollary 1. If F is (A, k)-Safe Mixed Implementable, then for any θ, θ′ ∈ Θ, it must be
that F (θ) ⊆ F (θ′) whenever for all i ∈ N one of the following holds:
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1. F (θ) ⊆ maxθ
′

i A(θ), or

2. for all x ∈ F (θ):

(a) Li(x, θ) ∩ A(θ) ⊆ Li(x, θ
′) ∩ A(θ) and

(b) SLi(x, θ) ∩ A(θ) ⊆ SLi(x, θ
′) ∩ A(θ).

Note when we have a social choice function where |F (θ)| = 1 for all θ ∈ Θ, Set-
Comonotonicity coincides with Comonotonicity. Therefore the following result is inherited
from Gavan and Penta (2025), limiting the possibility of Safety concerns.

Corollary 2. If |F (θ)| = 1 for all θ ∈ Θ, and therefore we have a social choice function,
and ∃θ ∈ Θ such that A(θ) = F (θ), then F (θ′) = F (θ) for all θ′.

When preferences are strict, instead, then Set-Comonotonicity reduces to the follow-
ing notion of strong Set-Comonotonicity, which is analogous to a notion of Strong Set-
Monotonicity that was introduced in a working paper version of Mezzetti and Renou (2012),
to cover the case of strict preferences:

Definition 6 (Strong Set-Comonotonicity). (F,A) satisfy strong Set-Comonotonicity if, for
any θ, θ′ ∈ Θ we have that (i) F (θ) ⊆ F (θ′) and (ii) A(θ) ⊆ A(θ′) whenever Li(x, θ) ∩
A(θ) ⊆ Li(x, θ

′) ∩ A(θ) for all x ∈ F (θ).

Strong Set-Comonotonicity simplifies the previous definition as follows: If, moving
from state θ to θ′, for every outcome x selected by the SCC at θ, all of the acceptable
outcome at θ that are worse than xare still worse than x at θ′, then it must be that all
acceptable outcomes at θ are acceptable at θ′ and all outcomes that are implemented at
θ are also implemented at θ′. The simplification is made possible because, with strict
preferences, there is no need to distinguish the weak and strict lower contour sets, and if
F (θ) ⊆ maxθ′ A(θ), then it must be that Li(x, θ

′) ∩ A(θ) = A(θ), and hence therefore the
first condition in Def. 5 no longer needs to be explicitly stated.

Using the results of theorem 1 and proposition 1, we can provide the following corollary,
which shows that strong Set-Comonotonicity is necessary for Safe Mixed Implementation
under strict preferences:

13



Corollary 3. If preferences are strict and F is maximally (A, k)-Safely Implementable in
mixed Nash equilibrium, then (F,A) satisfies strong Set-Comonotonicity.

Furthermore, if F is (non-maximally) (A, k)-Safely Implementable in mixed Nash equi-
librium, then there exists some sub-correspondence of A, A′ : Θ → 2Θ \ {∅}, such that
(F,A′) satisfy Strong Set-Comonotonicity.

3.2 Sufficiency

Next we show that Set-Comonotonicity is almost sufficient under strict preferences, when
paired with the following No-Veto condition, from Gavan and Penta (2025).5

Definition 7. F and A satisfy Safe No-Veto if, whenever ∃j ∈ N , θ, θ′ ∈ Θ such that
x ≿θ

i y for all y ∈ A(θ′) and i ̸= j then x ∈ F (θ) and A(θ) = X .

Safe No-Veto requires that, when at a state θ, all but one agent agree that some outcome
x is top ranked within the acceptability correspondence at some possibly different state
θ′, then that outcome must be implemented at θ, and the acceptability correspondence at
state θ must be vacuous, in the sense that A(θ) = X . Note that when the acceptability
correspondence is vacuous at all states, then this condition coincide swith the standard
notion of No-Veto by Maskin (1999).

With this, the following result can be seen as a generalisation of the sufficiency result
in Mezzetti and Renou (2012), which showed that Set-Monotonicity and No-Veto are suf-
ficient when Safety concerns are not present:

Theorem 2. If Θ is domain of strict preferences, n ≥ 3 and (F,A) satisfy (strong) Set-
Comonotonicity and Safe No-Veto, then F is (A, k)-Safely Implementable in mixed Nash
equilibrium for all 1 ≤ k < n

2
.

5Recall that when preferences are strict, there is no distinction between strong Set-Comonotonicity and
Set-Comonotonicity.
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4 Applications

In this section we study three applications to gain further insights on Safe Mixed Nash
Implementation. First, we discuss two important instances where the addition of Safety
considerations make Mixed Nash Implementation impossible to attain. Then, we discuss
an economically relevant setting where reasonable Safety concerns can be accommodated
within Mixed Nash Implementation, but not when only pure Nash equilibria are considered
(with or without Safety considerations).

4.1 The Strong Pareto Correspondence

An important social choice correspondence is the strong Pareto correspondence, which,
at each state of the world, selects the outcomes where no other feasible outcome makes
someone better off without making anyone worse off.6 On the global domain of single-top
preferences, where for each state θ ∈ Θ and for each individual i ∈ N , there is a unique
outcome x ∈ X which is the top alternative, x ≻θ

i y for all y ∈ X , Mezzetti and Renou
(2012) show that, in the domain of single-top preferences, the strong Pareto correspondence
is implementable in mixed Nash equilibrium, but not Nash implementable. Here we study
how this SCC interacts with Safety concerns. To do so, let us first define the strong Pareto
correspondence, F PO, formally:

F PO(θ) =

{
x ∈ X|∄y ∈ X such that ∀i ∈ N, x ∈ Li(y, θ)

and ∃i ∈ N such that x ∈ SLi(y, θ)

}

Although this SCC is known to be mixed Nash implementable on the domain of single-
top preferences (Mezzetti and Renou, 2012), we will show that it is not Safe mixed Nash
Implementable for any non-vacuous acceptability correspondence.

Proposition 2. On the global domain of single-top preferences, F PO is mixed-Nash im-
6This is in a sense the standard notion of Pareto efficiency, where the term ‘strong’ is added to stress

the comparison with the weak Pareto correspondence, which selects outcomes where there is no feasible
alternative that makes everyone strictly better off.
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plementable but is not (A, k)-Safe mixed Nash implementable for any A such that ∃θ ∈ Θ

where A(θ) ̸= X .

To see this, let A denote an acceptability correspondence such that ∃y ∈ X and θ ∈ Θ

s.t. y ̸∈ A(θ). Then, if y ̸∈ F PO(θ), it is certainly not the case that {y} = F PO(θ). Now
let us consider a state θ′ where, for all x, z ∈ A(θ), x ≿θ

i z implies x ≿θ′
i z and x ≻θ

i z

implies x ≻θ′
i z. That is, all strict and weak preferences of any alternatives in A(θ) between

θ and θ′ are preserved. By Corollary 1, it must be that F PO(θ) ⊆ F PO(θ′). However, we
can select θ′ such that y ≻θ′

i x for all x ∈ X , which is a single-top preference and therefore
in the domain. Therefore, F PO(θ′) = {y} by the definition of F PO. However, it cannot be
the case that F PO(θ) ̸= {y}, F PO(θ) ⊆ F PO(θ′) and F PO(θ′) = {y}. With this, we reach
a contradiction and the strong Pareto correspondence cannot be Safely Implemented when
there is some state where the acceptability correspondence does not include all alternatives.

4.2 The Top-Cycle Correspondence

Next we consider the top-cycle correspondence. In words, say that x dominates y at state
θ, which we denote by x ≫θ y, if the number of agents who strictly prefer x to y is larger
than the number who strictly prefer y to x. At each state, let F TC(θ) denotes the smallest
set of alternatives such that any alternative in the set dominates any alternative outside the
set. Formally:

F TC(θ) =
⋂

{X ′|x′ ∈ X ′, x ∈ X\X ′ implies x′ ≫θ x}

Mezzetti and Renou (2012) show that, while the top-cycle correspondence is not im-
plementable in pure Nash equilibrium, and therefore not Safe Nash Implementable for any
acceptability concerns, it is implementable in mixed Nash equilibrium when preferences
are strict. Yet, an identical reasoning to that which gave us the impossibility result for Safe
mixed Implementation of the Strong Pareto Correspondence, also implies the impossibility
of safety conerns for the top-cycle correspondence:

Proposition 3. On the global domain of strict preferences, the top-cycle correspondence
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is implementable in mixed Nash implementation but is not (A, k)-Safe mixed Nash imple-
mentable for any A such that ∃θ ∈ Θ where A(θ) ̸= X .

4.3 An Expansion of the Top Cycle Correspondence

In contrast to the results in the previous two subsections, here we present a possibility result
for Safe Mixed Implementation. More specifically, in environments with strict and single-
peaked preferences, we consider a modification of the top-cycle correspondence that selects
not only the Condorcet winner (which would be the unique outcome of in the top-cycle
correspondence in this domain), but also its immediate neighbours. We show that, under
natural acceptability constraints, this social choice correspondence is Safely Implementable
in mixed Nash equilibrium.

Formally, we consider the case where the number of agents n is odd, n > 3, and all
agents have single-peaked preferences. To this end, let X = {x1, x2, . . . , xm} denote the
set of allocations, with 2n − 2 > m > n + 1, and with the alternatives ordered so that
x1 < x2 < · · · < xm. A preference relation ≿θ

i is single-peaked if, for each agent i ∈ N

and each state θ ∈ Θ, there exists a peak xpi,θ ∈ X such that: (a) for all l ≥ l′ ≥ pi,θ,
xl ≿θ

i x
l′ implies xl′ ≾θ

i x
l−1 and (b) for all l ≤ l′ ≤ pi,θ, xl ≿θ

i x
l′ implies xl′ ≾θ

i x
l+1. We

will assume that preferences are strict (i.e., no indifference) and that, at each state, no two
agents share the same top-ranked alternative.

We will study an adaptation of the top-cycle correspondence. First note that, in the
case of single-peaked preferences, the top-cycle correspondence that we defined in the
previous subsection coincides with the allocation rule that selects, at every state, the unique
Condorcet winner, which is the allocation corresponding to the median peak. The extension
of the top-cycle correspondence that we consider adds to this sole allocation, also the two
outcomes that are on “either” side of the median peak.

One can think of this rule as capturing the following story: The designer has a view that
the Condorcet winner should be implemented, but they also want to accommodate some
fairness considerations. Specifically, they are concerned that the Condorcet winner could
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be criticized as being unfair as it is pinned down by the alternative that is maximal for the
individual with the median peak, and therefore can be seen as a ‘tyranny of the median’.
To address this criticism, the planner decides to design a rule that also allows for slightly
better allocations to those with peaks to the left and to the right. This way, it cannot be that
only the most preferred outcome of the median peaked individual is implemented, but they
provide some ‘concessions’ to the groups to the left and to the right.

We coin this rule as the neighbourhood of Condorcet rule. Specifically, say that w(θ) ∈
X is a Condorcet winner at θ if:

|{i ∈ N |w(θ) ≻θ
i y}| > |{i ∈ N |y ≻θ

i w(θ)}| ∀y ̸= w(θ)

Hence, letting m(θ) denote the index of the median peak at state θ, the Condorcet winner
selects the median peak allocation xm(θ) = w(θ). Our neighbourhood of the Condorcet rule
selects not only xm(θ), but also the allocations on either side of it. Formally:

F †(θ) = {xm(θ)−1, xm(θ), xm(θ)+1}

Note that, given our domain restriction, all agents have a different peak at each state,
which ensures that w(θ) ̸= x1, xm for all θ and therefore |F (θ)| = 3 for all θ.

We first note that this rule is not Nash implementable and, therefore, not Safely Imple-
mentable for any acceptability correspondence.7

Lemma 1. On the global domain of single-peaked and strict preferences where no two
agents share the same peak at any state, F † is not Nash implementable, and hence not
(A, k)-Safely Nash Implementable for any A or k.

We will now consider the possibility of implementing this neighbourhood Condorcet
correspondence in mixed Nash equilibrium with reasonable Safety concerns. Specifically,

7It is worth noting that on this domain the Condorcet winner is implementable (Maskin, 1999). Interested
readers are pointed to Healy and Peress (2015), who show when the set of states includes all of those when
the Condorcet winner exists, but includes at least more state than the rule which selects the Condorcet winner
when possible is not Nash implementable.
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we consider an acceptability correspondence that, at each state θ, includes all the alterna-
tives that are between the most extreme peaks possible across all states θ′ that share the
same median peak as θ:

A†(θ) =
⋃

{θ′|m(θ′)=m(θ)}

{xl′ , xl′+1, ..., xl′′−1, xl′′ ∈ X|l′ = min
i∈N

pi,θ′ , l
′′ = max

i∈N
pi,θ′}

Note that F †(θ) ⊆ A†(θ).

The next proposition shows that this rule is Safe Mixed Nash Implementable under the
above acceptability correspondence. This is the case for any set of preferences that satisfy
the restrictions above.8

Proposition 4. On any domain of single peaked and strict preferences where no two agents
share the same peak, F † is (A†, k)-Safe mixed Nash Implementable with 1 ≤ k < n

2
.

5 Related Literature

The notion of mixed Nash implementation is taken from Mezzetti and Renou (2012), who
provide an ordinal approach. They show that Set-Monotonicity is necessary and together
with No-Veto is sufficient when n ≥ 3. Thus, our results can be seen as a generalisa-
tion of theirs, accounting for Safety concerns. Their paper shows that many popular social
choice functions that are not implementable in Nash equilibrium are in fact implementable
in mixed Nash equilibrium. For instance, the Pareto correspondence and top-cycle cor-
respondence. We show that when preferences are rich enough this is not the case if any
Safety concerns are adopted. However, in line with their results, we show some interesting
rules could be implemented in mixed Nash, even accounting for Safety concerns, when
they could not be implemented in Nash.

8Note that this is not immediate as A(θ) is pinned down by conditions of all states that have the same
Condorcet winner. Therefore, Safe Implementation on a larger space does not imply Safe Implementation on
the smaller space as the acceptability correspondences across the two could differ.
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Gavan and Penta (2025), study (pure) Nash implementation with Safety concerns. Here,
instead, we study this with mixed Nash equilibrium, following the ordinal approach of
Mezzetti and Renou (2012). They introduce a generalisation of Maskin Monotonicity
called Comonotonicity. Comonotonicity imposes joint restrictions on both the acceptabil-
ity correspondence and the social choice correspondence. It is shown that Comonotonicity
is necessary and, together with Safe No-Veto, is sufficient when n ≥ 3. In a similar sense,
this paper shows that Set-Comonotonicity, a generalisation of Mezzetti and Renou (2012)’s
Set-Monotonicity, is necessary and, together with the same Safe No-Veto condition, is suf-
ficient when preferences are strict and n ≥ 3. Gavan and Penta (2025) relate their concept
to Eliaz (2002)’s fault tolerant implementation, Shoukry (2019)’s outcome robust imple-
mentation, Jackson and Palfrey (2001)’s voluntary implementation, Hayashi and Lombardi
(2019)’s constrained implementation, amongst others.9 We point interested readers towards
the discussion in Gavan and Penta (2025).

Implementation in mixed Nash equilibrium departs from Nash implementation in three
ways. Firstly, as the name suggests, the solution concept used is mixed Nash equilib-
rium rather than pure Nash equilibrium. A more subtle difference is that this notion of
implementation allows for the use of a stochastic mechanism. As agents are assumed to
possess vNM preferences, it is natural to allow the designer to randomise between out-
comes. This is further emphasised in the third difference; any element of the SCC must
be in the support of an equilibrium, but said equilibrium may put positive probability on
other elements in the SCC. It is worth pointing out that allowing for stochastic mechanisms
does in fact make implementation easier as it strictly increases the set of mechanisms that
can be used. Bochet (2007) and Benoı̂t and Ok (2008) show that, under mild domain re-
strictions, Maskin Monotonicity is both necessary and sufficient for Nash implementation
with stochastic mechanisms. A similar result, allowing for stochastic mechanisms while
maintaining pure strategies, is considered with Safety concerns in Gavan and Penta (2025).

9Safe Implementation can also be seen as a notion of robustness of the mechanism with respect to possible
misspecification of the agents’ strategic interaction. In this sense, it is also related to Bochet and Tumennasan
(2023a,b). For a distinct but related approach, that seeks implementation with respect to a wide range of
solution concept, see Jain et al. (2024). Clearly, these notions of robustness are quite different from the those
in the literature inspired by the sa called Wilson doctrine (e.g., Bergemann and Morris (2005, 2009a,b), Penta
(2015), Müller (2016), Ollár and Penta (2017, 2023, 2024), etc.)
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It is shown that, under mild domain restrictions, Safe No-Veto can be dropped from the
sufficient conditions.

Bochet and Maniquet (2010) studied virtual implementation, where stochastic mech-
anisms are permitted, with support restrictions. They provide a necessary and sufficient
condition, extended monotonicity, which restricts the joint behaviour of the SCC and the
(state dependent) support, in a similar fashion to the joint restriction we provide on the SCC
and the acceptability correspondence.

Xiong (2022) provided a full characterisation of implementation in mixed Nash equilib-
rium, providing a condition based on a construction of the correct set of alternatives used
to sustain equilibria, in a similar fashion to the “Ci” sets of Moore and Repullo (1990)
and the constructive approach of Sjöström (1991) for Nash implementation. (See Korpela
(2010), for an insightful connection between the two approaches). Here, we do not attempt
to provide a full characterisation for Safe Implementation in mixed Nash equilibrium, and
rather take the approach of providing simple, easy to interpret, necessary and sufficient
conditions, that better highlight the role of the more novel aspects brought about by the
Safety concerns.

6 Conclusion

This paper extends the framework of Safe Implementation (Gavan and Penta, 2025) to
environments where agents may use mixed strategies, so as to gain a deeper understand-
ing of the restrictions that Safety considerations impose on Implementation. We do this by
following the ‘ordinal approach’ of Mezzetti and Renou (2012), which imposes an extra ro-
bustness desideratum on the way that risk preferences are embedded in the baseline setting,
since we think it provides the best way to distil the effects that allowing for mixed strategies
has on the implementation toolkit, independent of the impact of the stronger assumptions
on agents’ preferences that are needed to deal with the possibility of randomization.

Our main results identify Set-Comonotonicity as the key condition that balances the
expanded equilibrium set, due to the introduction of randomisation, with the robustness
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requirements that are due to Safety considerations. We showed that Set-Comonotonicity
is necessary for (Maximal) Safe Mixed Nash Implementation and, under strict preferences
and a Safe No-Veto condition from Gavan and Penta (2025), it is also sufficient for Safe
Mixed Nash Implementation. These findings generalise the classical results of Mezzetti
and Renou (2012) by embedding them within the Safety context, and they build directly
on the Safe Implementation framework of Gavan and Penta (2025), thereby deepening our
understanding of the impact of Safety concerns on implementation.

Our results indicate that while randomisation can expand the designer’s implementation
toolkit, Safety concerns impose nontrivial restrictions on which social choice correspon-
dences are implementable, especially when the acceptability of off-equilibrium outcomes
is constrained. Through our applications, we demonstrate both the power and the limita-
tions of this extended framework, illustrating that some correspondences that are imple-
mentable under mixed strategies alone that become infeasible when even minimal Safety
concerns are introduced. In contrast, economically interesting rules can be implemented
with natural Safety concerns even when Nash implementation (and therefore Safe Nash
Implementation) is not possible.
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A Proofs

Proof of Proposition 1 and Theorem 1. For the mechanism M that (A, k)-safely mixed Nash
implements F take A′(θ) =

⋃
uθ∈Uθ

⋃
σ∗∈CM(θ,u)

⋃
σ∈Bk(σ∗) supp(P (σ, g)) that is, the sup-

port of all k deviations from equilibrium, across all possible equilibria, across all possible
cardinal representations. Clearly by definition A′(θ) ⊆ A(θ) and for any maximally (A, k)-
safely implemented in mixed Nash equilibrium F it must be that A′(θ) = A(θ). Therefore
assume that A is maximally safe, understanding that if it is not then it represents the sub-
correspondence that is.

Claim 1. Suppose Li(x, θ) ∩ A(θ) ⊆ Li(x, θ
′) ∩ A(θ) and SLi(x, θ) ∩ A(θ) ⊆ SLi(x, θ

′)

for all x ∈ F (θ). Then, given any cardinal representation ui(·, θ) of ≿θ
i , there exists a

cardinal representation ui(·, θ′) of ≿θ′
i such that ui(x, θ

′) ≤ ui(x, θ) for all x ∈ A(θ) and
ui(x, θ

′) = ui(x, θ) for all x ∈ F (θ).

The proof follows the logic of Mezzetti and Renou’s claim C. We have included this for
completeness and to ensure safety concerns do not interfere with the logic.

Proof of Claim 1. For all x ∈ F (θ) let ui(x, θ
′) = ui(x, θ). To see this has no con-

tradiction notice that as Li(x, θ) ∩ A(θ) ⊆ Li(x, θ
′) ∩ A(θ) if y ∈ F (θ) ∩ Li(x, θ) then

ui(y, θ
′) = ui(y, θ) ≤ ui(x, θ) = ui(x, θ

′), as required as y ∈ Li(x, θ
′) by the conditions

laid out. Similarly, as SLi(x, θ) ∩ A(θ) ⊆ SLi(x, θ
′) ∩ A(θ) if y ∈ F (θ) ∩ Li(x, θ) then

ui(y, θ
′) = ui(y, θ) < ui(x, θ) = ui(x, θ

′), as required as y ∈ F (θ) ∩ SLi(x, θ).

As inequalities are strict when required, there are enough open set to represent ≿θ′
i with

ui(·, θ′).

To see that at least one such representation satisfies ui(x, θ
′) ≤ ui(x, θ) for all x ∈

A(θ) first note that for any x ∈ A(θ) such that x ∼θ′
i y for some y ∈ F (θ) we can set

ui(x, θ
′) = ui(y, θ

′) = ui(y, θ). Note that x /∈ SLi(y, θ
′) ∩ A(θ) and therefore x /∈

SLi(y, θ) ∩ A(θ). Therefore, ui(x, θ) ≥ ui(y, θ). Therefore, in this selection ui(x, θ) ≥
ui(y, θ) = ui(y, θ

′) = ui(x, θ
′), satisfying the condition. Now consider some x ∈ A(θ)

such that x ≻θ′
i y for some y ∈ F (θ). For this alternative, note that x /∈ Li(y, θ) ∩ A(θ)

and therefore x /∈ Li(y, θ) ∩ A(θ). Therefore ui(x, θ) > ui(y, θ) = ui(y, θ
′). Therefore
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ui(x, θ
′) can be selected in the open set of (ui(y, θ), ui(x, θ)) and maintaining all strict

preferences in θ′. Finally, consider some x ∈ A(θ) such that y ≻θ′
i x for all y ∈ F (θ). It

must be that y ∈ SLi(y, θ) ∩ A(θ) for all y ∈ F (θ). Therefore ui(x, θ
′) must be strictly

less than ui(y, θ
′) = ui(y, θ) for all y ∈ F (θ). Selecting ui(x, θ

′) to be strictly lower than
all ui(y, θ) with y ∈ F (θ) and ui(x, θ) yields no contradictions, as open sets are available
between all strict preferences this allows for such a representation to exist. □

The proof will now proceed by the contrapositive. Suppose that F (θ) ̸⊂ F (θ′) while the
conditions of Set-Comonotonicity holds. Take any cardinal representation u(·, θ) of ≿θ and
any equilibrium σ∗ ∈ CM(u, θ). If σ∗ is an equilibrium for some cardinal representation
u(·, θ′) ∈ Uθ′ then it follows that the support of P (σ∗, g) must also be included in F (θ′)

by definition of implementation. Further, the support of all k deviations of σ∗ must also be
included in A(θ′) by the definition of maximal acceptability.

As F (θ) ⊈ F (θ′) for any x ∈ F (θ)\F (θ′) there is some σ∗ and u(·, θ) such that σ∗

selects x with positive probability and is a mixed Nash equilibrium. However, σ∗ cannot
be an equilibrium at any cardinal representation u(·, θ′) ∈ Uθ′ . In particular, for any one
such that u(·, θ′) satisfies the condition of the previous claim.

Thus, assuming M is countable, it must be that there exists an i ∈ N and message m∗
i

in the support of σ∗
i such that:∑

m−i

[Ui(g(m
∗
i ,m−i), θ)− Ui(g(m

′
i,m−i), θ)]σ

∗
−i(m−i) ≥ 0 (for all m′

i)∑
m−i

[Ui(g(m
∗
i ,m−i), θ

′)− Ui(g(m
′
i,m−i), θ

′)]σ∗
−i(m−i) < 0 (for some m′

i)

Therefore ∑
m−i

[Ui(g(m
∗
i ,m−i), θ)− Ui(g(m

∗
i ,m−i), θ

′)]σ∗
−i(m−i) >∑

m−i

[Ui(g(m
′
i,m−i), θ)− Ui(g(m

′
i,m−i), θ

′)]σ∗
−i(m−i)
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Consider the agents who satisfy F (θ) ⊆ maxθ
′

i A(θ). As deviations can only lead to
allocations in A(θ), it is clear that they cannot be the agents with a profitable deviation as
any deviation leads to alternatives in A(θ).

Instead consider the agents for which, for all x ∈ F (θ), Li(x, θ) ∩ A(θ) ⊆ Li(x, θ
′)∩

Therefore, as ui(x, θ) = ui(x, θ
′) for all x ∈ F (θ) (which are the only allocation in the

support of σ∗), and ui(x, θ
′) ≤ ui(x, θ) for all x ∈ A(θ), which are the only reachable

allocations in the support of up to k player deviations from σ∗ (and therefore one). We can
therefore conclude that Ui(g(m

∗
i ,m−i), θ) = Ui(g(m

∗
i ,m−i), θ

′) for all m−i in the support
of σ∗

−i. Therefore
∑

m−i
[Ui(g(m

∗
i ,m−i), θ) − Ui(g(m

∗
i ,m−i), θ

′)]σ∗
−i(m−i) = 0. Further,

Ui(g(m
∗
i ,m−i), θ

′) ≤ Ui(g(m
′
i,m−i), θ

′) for all m−i in the support of σ∗
−i. However, to-

gether this implies that∑
m−i

[Ui(g(m
∗
i ,m−i), θ)− Ui(g(m

∗
i ,m−i), θ

′)]σ∗
−i(m−i) = 0 ≤∑

m−i

[Ui(g(m
∗
i ,m−i), θ

′)− Ui(g(m
′
i,m−i), θ

′)]σ∗
−i(m−i)

A contradiction.

For an arbitrary cardinal representation u(·, θ) and arbitrary equilibrium σ∗ at such a
cardinal representation, we conclude that it must also be an equilibrium for some cardinal
representation u(·, θ′). With this, we can conclude that a) the support of such an equilibrium
must be in F (θ′) (therefore F (θ) ⊆ F (θ′)) and b) the outcomes in the support of a k

deviation from σ∗ must be included in the acceptability correspondence at θ′ and therefore
for a maximally safe A; A(θ) ⊆ A(θ′).

Proof of theorem 2. Let U =
⋃

θ∈Θ U θ and define ΘU as {(θ, u) ∈ Θ × U : u ∈ U θ}.
Consider the following mechanism ⟨M, g⟩. For each player i ∈ N let Mi = ΘU × {αi :

αi : X×Θ2 → X}×{x̃i : Θ∪{1} →
⋃

θ∈ΘA(θ)|x̃i(θ) ∈ A(θ)∀θ ∈ Θ}×N. That is, each
player announces a state an associated cardinal utility function, a function from alternatives
and pairs of states into outcomes, an outcome for each state, an acceptable outcome for
each state and one additional outcome, and a positive integer. A typical element mi ∈ Mi
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is given by ((θi, ui), αi, x̃i, ni). Let 1[x] be the degenerate lottery leading to the outcome x.

The allocation rule is as follows:

1. If mi = ((θ, u), α, x̃, 1) for all i ∈ N and α(x, θ, θ) = x for all x ∈ F (θ) then:

g(m) =
1

|F (θ)|
∑

x∈F (θ)

1[x]

2. If there exists some j ∈ N such that mi = ((θ, u), α, x̃, 1) for all i ∈ N\{j} with
α(x, θ, θ) = x for all x ∈ F (θ) and mj = ((θj, uj), αj, x̃j, zj) ̸= mi then

g(m) =
1

|F (θ)|
∑

x∈F (θ)

δx(m)1[αj(x, θ, θ′)] + (1− δk(x))1[x]

where

δx(m) =

δ ∈ (0, 1) if αj(x, θ, θj) ∈ Lj(x, θ) ∩ A(θ)

0 otherwise

3. If ∃D ⊂ N such that 1 < |D| ≤ k and mi = ((θ, u), α, x̃, 1) for all i /∈ D, then the
allocation in x̃j(θ) ∈ A(θ) where j ∈ D is such that zj ≥ zj

′ for all j′ ∈ D. If more
than one has the highest integer select uniformly.

4. Otherwise, g(m) = x̃i(1) where i is such that ni > nj for all j ̸= i. If there is a tie
for the highest integer uniformly randomise.

Step 1. Fix a state θ and any cardinal representation u ∈ U θ. First it will be shown that
for any x ∈ F (θ) there is an equilibrium σ∗ ∈ CM(θ, u) such that the support of P (σ∗, g)

contains x. Consider a set of strategies σ∗ such hat σ∗
i = ((θ, u), α, x̃, 1) for all i ∈ N .

That is, a strategy that lies in rule 1. Player i deviating can only lead to rule 2, in which
either the same allocation is given or one that is strictly worse at state θ via the inclusion of
positive probability on αj(x, θ, θj) ∈ Lj(x, θ)∩A(θ), i.e. it shifts weight from x ∈ F (θ) to
a less preferred option αj(x, θ, θj). Therefore σ∗ is a Nash equilibrium that has x ∈ F (θ)

in it’s support at state θ.
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Step 2. Next it must be shown that for any θ ∈ Θ, u ∈ U θ that for any σ∗ ∈ CM(θ, u)

the support of P (σ∗, g) is included in F (θ). Further, it needs to be shown that safety is
satisfied. Let gO(m) = {x ∈ X|g(m)[x] > 0} be the outcomes that occur with positive
probability when the message m is played. Partition the set of messages into four sub-cases
corresponding to the four rules of the mechanism.

1. R1 = {m ∈ M |mi = ((θ, u), α, x̃, 1) for all i ∈ N and α(x, θ, θ) = x for all
x ∈ F (θ)}.

2. Ri
2 = {m ∈ M | mj = ((θ, u), α, x̃, 1) for all j ∈ N\{i} and α(x, θ, θ) = x for all

x ∈ F (θ) while mi ̸= mj}. Let R2 =
⋃

i∈N Ri
2.

3. RD
3 {m ∈ M | mj = ((θ, u), α, x̃, 1) for all j ∈ N\D and α(x, θ, θ) = x for all

x ∈ F (θ) while mi ̸= mj for all i ∈ D}. Let R3 =
⋃

D∈{D|1<|D|≤k}R
D
3 .

4. R4 = M\[R1 ∪R2 ∪R3].

Consider σ∗ ∈ CM(u∗, θ∗) and let M∗ be the set of message profiles that occur with
positive probability under σ∗. It will be shown that g(m∗) ⊆ F (θ∗) and additionally any
k-deviation from σ∗ would lead to A(θ∗), which is implied by g(mD,m

∗
−D) ∈ A(θ∗) for

all D such that |D| ≤ k and mD ∈ MD, m∗
−D ∈ M∗

−D.

To do so, we will consider a candidate deviation from this equilibrium σD
i , which will

be constructive. It will be shown that the only occasion in which this is not a profitable
deviation (and therefore it is possible that σ∗ is a Nash equilibrium) is exactly when strong
Set-Comonotonicity or Safe No-Veto can be applied. With this, we will show that for this
mechanism the premise of sufficiency is upheld.

To this end, for any i ∈ N and m∗
i = ((θi, ui), αi, xi, zi) ∈ M∗

i define a deviation
message mD

i (m
∗
i ) = ((θi, ui), αD, x̃D, zD) where 1) αD(x, θ, θ) ∈ Li(x, θ) ∩ A(θ) is such

that αD(x, θ, θ) ≿θ∗
i y for all y ∈ Li(x, θ) ∩A(θ). 2) x̃D(1) is such that x̃D(1) ≿θ

i y for all
y ∈

⋃
θ′∈ΘA(θ′) while x̃(θ′) is such that x̃(θ′) ≿θ

i y for all y ∈ A(θ′). 3) zD > zj for all
but a mass of 1 ≥ 1 − µ > 0 messages of other players played in equilibrium. Note this
can be arbitrarily small but cannot be 0 due to the possibility of randomising over infinitely

29



many strategies. Now let

σD
i (mi) =

σ∗
i (m

∗
i ) if mi = mD

i (mi) for some m∗
i ∈ M∗

i

0 otherwise

Notice that now no message in the support of σD
i , σ

∗
−i falls under rule 1. They must fall

under either Ri
2, R

D
3 such that i ∈ D, or R4.

Suppose that (m∗
i ,m

∗
−i) ∈ R1 would be realised with positive probability. That is, for all

j ̸= i m∗
j = m∗

i = ((θ, u), α, x̃, 1). if αD(x, θ, θ) ̸= x for some θ ∈ Θ and x ∈ F (θ), by the
strict preferences it must be that this is strictly profitable upon this realisation m∗

−i as it will
ensure strictly more probability is put on αD(x, θ, θ). By construction If αD(x, θ, θ) = x

for all θ ∈ Θ and x ∈ F (θ) then the deviation does not change the allocation. We conclude
that σD

i does not reduce the payoff for i in this case. In the case where it is not profitable for
any agent to make sure a deviation, it must be that Li(x, θ) ∩ A(θ) ⊆ Li(x, θ

∗) ∩ A(θ) for
all x ∈ F (θ) and therefore it must be that this deviation is not profitable for this particular
message. As this is true for all i, as any player could make such a deviation, it also implies
that, by strong Set-Comonotonicity we have that F (θ) ⊆ F (θ∗), and therefore there would
be no contradiction to m∗ being in the support of the mixed Nash equilibrium. Further,
as A(θ) ⊆ A(θ∗) by the same condition we conclude that there is no contradiction to
safety, as only allocations in A(θ) are reachable in k deviations from m∗ (including mixed
deviations).

Suppose that (m∗
i ,m

∗
−i) ∈ Ri

2 occurs. j ̸= i m∗
i ̸= m∗

j = ((θ, u), α, x̃, 1) Then for
some j ∈ N , j ̸= i it must be that σD

j is a profitable deviation as they can induce their
most preferred allocation in A(θ) when they announce the highest integer, which occur
with sufficiently high probability to ensure that the strict preferences ensure their most
preferred provides more utility than implemented by m∗, regardless of the outcome that
occurs with the remaining probability. Given this, it is strictly profitable to deviate unless
g(m∗

i ,m
∗
−i) = y is the most preferred outcome at state θ∗ within A(θ). In which case, the

deviation does not decrease the utility. If it were not to change the outcome for any such
j, by Safe No-Veto, it must be that y ∈ F (θ∗) and A(θ∗) = X . Therefore, if the overall
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deviation is not strictly profitable (and this event occurs), then the condition of sufficiency
is not violated. Otherwise, the deviation strictly increases the utility for some agent i with
a sufficiently high probability in this event.

By a similar logic, either the deviation is strictly profitable when (m∗
i ,m

∗
−i) ∈ R3 ∪ R4

for some agents or the condition of Safe No-Veto is used to show that the outcome would
not violate the notion of safety or implementation.

As all cases are a weak improvement, and a strict improvement unless it would be per-
missible for σ∗ to be an equilibrium given the condition of Safe No-Veto and strong Set-
Comonotonicity, we have shown that implementation is not violated.

Proof of Lemma 1. Consider a state θ with F (θ) = {xl−1, xl, xl+1} where l ≥ 3, xl−1 is
not top ranked for any agent, and xl−1 ≻θ

i x
l+1 for the median peaked agent i. Consider an

alternative state of the world θ′ such that all preferences are the same for all agents, bar i,
the median peaked agent. At θ′, xl−1 ≻θ′

i xl. Note this implies that, by the definition of F ,
F (θ′) = {xl−2, xl−1, xl}. However, for all agents we have that Lj(x

l+1, θ) = Lj(x
l+1, θ′),

and therefore by Maskin monotonicity we require that xl+1 ∈ F (θ′). A contradiction.

Proof of Proposition 4. The proof will rely on showing the conditions of Theorem 2 hold.
Note that preferences are strict and n ≥ 3.

We will now show that Set-Comonotonicity holds. Suppose that there are some θ, θ′

such that for all i ∈ N , for all x ∈ F (θ), Li(x, θ) ∩A(θ) ⊆ Li(x, θ
′) ∩A(θ). As this is the

case, it must be that for xl = w(θ) we have that for all agent’s that if xl ≻θ
i y then xl ≻θ′

i y

for y ∈
⋃

θ′|w(θ)=w(θ′){xl′ , xl′+1, ..., xl′′−1, xl′′ |l′ = mini∈N pi,θ, l
′′ = maxi∈N pi,θ}. We will

argue the median voter remains the same, and therefore F (θ′) = F (θ). It is clear that the
median peaked individual, m, cannot have changed their preferences, as Lm(x

pm,θ , θ) ∩
A(θ) = A(θ), and therefore Lj(x

pm,θ , θ′) ∩ A(θ) = A(θ). As xpm,θ must be interior in
A(θ), as all agents have different peaks, it is only possible if xpm,θ = xpm,θ′ . Therefore, if
it were not the case, there must be some agent i such that sign(pi,θ − pm,θ) ̸= sign(pi,θ′ −
pm,θ), to ensure the median voter changes. If xpi,θ′ ∈ A(θ), then this is a contradiction
as xpi,θ′ ∈ Li(x, θ) ∩ A(θ) while xpi,θ /∈ Li(x, θ) ∩ A(θ), a contradiction. Therefore it
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must be that xpi,θ′ /∈ A(θ). Suppose that pi,θ′ > max{θ′|w(θ′)=w(θ)}maxj∈N pj,θ′ . Then
it must be that Li(x, θ

′) ∩ A(θ) = {xh ∈ A(θ)|h ≥ xl, s.t.xl = x}. However, this
would require that pi,θ < pm,θ. If pi,θ < pm,θ − 1 then ∃xh′ ∈ Li(x, θ) ∩ A(θ) such
that h′ < pm,θ, and therefore Li(x, θ) ∩ A(θ) ̸⊆ Li(x, θ

′) ∩ A(θ). Therefore it must
be that pi,θ = pm,θ − 1. However, as xpm,θ−1 ∈ F (θ), we can conclude that xpm,θ ∈
Li(x

pm,θ+1, θ)∩A(θ) while xpm,θ,θ /∈ Li(x
pmθ+1, θ′)∩A(θ), a contradiction as xpm,θ ∈ F (θ).

By analogy, if pi,θ′ < min{θ′|w(θ′)=w(θ)}minj∈N pj,θ′ we conclude that it cannot be that Set-
Comonotonicity holds. Therefore, whenever there are some θ, θ′ such that for all i ∈ N ,
for all x ∈ F (θ), Li(x, θ) ∩ A(θ) ⊆ Li(x, θ

′) ∩ A(θ) the median voter is the same and
F (θ) = F (θ′). Further, by construction, A(θ) = A(θ′). Therefore the condition is satisfied.

All that is left to show is that Safe No-Veto is satisfied. To see this, recall that each agent
has a different peak. Therefore there are n alternatives that must be the peak at any state
θ ∈ Θ. As |X| < 2n − 2, the peaks are such that and |A(θ)| ≥ n for any θ ∈ Θ, it must
be that at least three peaks at θ′ are in A(θ). As they have different peaks, and therefore
maximal alternatives, we conclude that Safe No-Veto is satisfied.
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