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Abstract

I study binding agreements over play in a game and the possibility of inefficient

agreements when mutual confirmation is required. I propose a negotiation protocol

where, in each round, agents propose actions from the underlying game that they could

agree to, signalling the agreement they would like. The protocol terminates when pro-

posals are mutually confirmed. The model is solved using Subgame Perfect Equilibrium.

Since agents only propose actions they could agree to, the agreement outcomes exhibit

a self-generating structure. A full characterisation is provided for two-player games,

relying on appropriate individual punishments. These individual punishments are used

for sufficiency in n-player games and a necessary iterative rationality constraint is in-

troduced. I extend the solution concept to allow cooperative agreements within the

negotiation game where generalisations of the main results hold.

Keywords: Agreements, Negotiation, Cooperation

JEL Codes: C70, C71, C72

1 Introduction

Binding agreements over actions in strategic environments are central to economic life. From

international trade deals to labour contracts, negotiated agreements shape outcomes across a

wide range of contexts. Economic theory, following the logic of the Coase Theorem, predicts

that when mutual gains exist and there are no frictions, fully rational agents should bargain

until efficiency is achieved.1 Even when agreement amongst all agents is not achievable,
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existing models often imply that the most efficient feasible outcome will be reached among

the agreeing parties (e.g., Ray and Vohra (1997); Ellingsen and Paltseva (2016)).

Yet in practice, inefficient agreements are widespread. Trade agreements often maintain

positive tariffs despite mutual gains from liberalization. Climate treaties fall short of optimal

emissions targets, and labour negotiations frequently result in rigid and suboptimal working

conditions. Concretely, post-Brexit negotiations between the UK and EU yielded a trade

deal that imposed costly frictions, where it was clear from the outset both sides would

have preferred to avoid. These outcomes raise a central question: what drives inefficient

agreements even when agents are fully rational and information is complete? Additionally,

what kind of inefficiency can arise?

This paper presents a model of negotiation over play in a game, where inefficiencies

emerge endogenously from the structure of agreement. Agents make binding proposals

about which action profile to implement in the underlying game. Agreements are formed

when proposals coincide and are mutually confirmed, that is, both parties need to sign

off on the proposal. The negotiation is dynamic and potentially unbounded in time, but

agents are not impatient. Importantly, all proposals must be agreement actions – those that

could in principle be agreed to – which leads to a self-generation structure in equilibrium.

Nonetheless, the need for mutual sign off, which is prevalent in economic agreements, can

lead to inefficiency. Simply put, a proposal that is inefficient may arise due to the mutual

belief that the other player(s) would not agree to a more efficient proposal. This provides

no incentive a) to put a more efficient proposal on the table and b) even confirm a more

efficient agreement, as lack of confirmation from the other party means it would not be

implemented regardless. However, there is the natural question of what kind of agreements

can persist in this environment.

Two main results to answer this question follow. First, in two-player games, I fully

characterize the set of negotiated agreement outcomes. Each outcome must provide players

with payoffs above a player-specific punishment threshold – the worst credible agreement

each player can enforce. Simply, the player specific punishment must provide a) the pun-

ished player with a best response payoff in the underlying game and b) the punishing player

a payoff higher than the one pinned down by their punishment. These thresholds are con-

structed from the underlying game and can be seen as similar to self-enforcing punishments

as in repeated games (Fudenberg and Maskin, 1986; Abreu et al., 1994) and commitment

folk theorems of contract theory (Tennenholtz, 2004; Kalai et al., 2010; Peters and Szentes,

2012), but are constrained to be agreement outcomes themselves. The result bears resem-

blance to folk theorems but is generally more restrictive, as the need to only propose what
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could actually be agreed to prevents threats that are contemporaneously not credible.2 In

comparison to predictions of folk theorems, negotiated binding agreement outcomes must

satisfy some lower bound of efficiency, dictated by these player-specific punishment bounds.

Second, in n-player games, the two-player characterization provides sufficient conditions

for agreement. To derive necessary conditions, I introduce the concept of “iterated elimina-

tion of individually irrational actions” in the underlying game. An action is eliminated if,

even under the most optimistic beliefs about others’ actions, it yields a lower payoff than

some guaranteed response. This process identifies actions that cannot credibly be proposed

or agreed upon. Any equilibrium agreement must survive this iterative process. In many

games, the necessary and sufficient conditions lead to a tight characterisation on outcomes.

To illustrate these results, I analyse two benchmark games. First, a Cournot duopoly

with asymmetric costs shows how bargaining power emerges endogenously and shapes the

set of sustainable agreement outcomes. Unlike the full folk theorem predictions, the set of

agreement outcomes may exclude highly inefficient profiles and favor the lower-cost firm.

Second, a first-price auction with heterogeneous bidders demonstrates how minimal payoff

guarantees constrain the allocation: bidders with low valuations cannot be awarded the

good with probability one under any equilibrium agreement.

Finally, I extend the framework to allow for coalitional deviations. That is, agents may

make binding agreements not only over final actions but over the negotiation strategies

themselves. I define a generalized equilibrium concept, the C-Subgame Perfect Equilibrium,

where no coalition in a specified collection can jointly deviate profitably. This leads to a

refinement of outcomes consistent with the β-core (Aumann, 1961), subject to strategic con-

straints. While allowing coalitional deviations can sometimes restore efficiency, it may also

result in non-existence, underscoring the fragility of efficient agreement when negotiating.

This approach complements existing work on bargaining, repeated games, and contract

theory by offering a tractable model of agreement formation that allows for full strategic

reasoning without relying on a mediator to ensure cooperative outcomes. It identifies an

important source of inefficiency that arise solely from the requirement of mutual agreement

in a dynamic setting, even under complete information. In doing so, it sheds light on

the structure of real-world agreements and their frequent departures from efficiency and

provides a model of what could occur under these settings.

2The contracting literature has not imposed such a restriction and the flow of payoffs to reward punish-
ments today with prizes tomorrow ensures enforcement for infinitely repeated games.
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2 Model

Let the underlying game being negotiated over beG = 〈N, (ui, Ai)i∈N 〉 whereN = {1, 2, 3, ..., n}
is a finite set of players, Ai is a set of actions for each player with typical element ai ∈ Ai.
A = ×i∈NAi is the set of action profiles with typical element a ∈ A. ui is utility function

such that ui : A→ R and ui is bounded for all i ∈ N . Let A−i = ×j 6=iAj .

I now define the negotiation game over G. There will be potentially infinitely many

periods to reach an agreement and the process will take the following form. In each period,

agents make a proposal of their own agreement action, ai, they will take within the under-

lying game G. Agents then observe the proposal made by all others. After doing so, they

may simultaneously decide whether to “confirm” their choice by proposing the same action

again, or alternatively propose a new action. If all agents confirm the proposal, an agree-

ment is made, and that action profile is implemented in a binding way. If not, they continue

to the next round and the same process occurs until confirmation is made by all agents,

leading to an agreement. As the proposals made are required to be agreement actions a

self-generation argument is used. If there are infinitely many periods without agreement, I

refer to this as perpetual disagreement.3

Formally, let the set of partial histories consist of all h = (a1, a2, ..., ak) such that

at 6= at−1 for any t ≤ k where at = (ati)i∈N denotes the profile of proposals made in period

t. I will denote the set of all partial histories by H. Proposals are assumed to be made

simultaneously within a period, and therefore no history is such that only some agents have

made proposals.4

A history is terminal if, either:

1. the same action profile is proposed in consecutive periods, and no earlier occurrence of

consecutive repetition is present. That is, z = (a1, ..., ak−1, ak) is terminal if ak = ak−1

and am 6= am−1 for all m < k. Let the set of such histories be denoted by Z ′ and refer

to such histories as with agreement.

2. or there is an infinite sequence of proposed action profiles where the same action

profile is never proposed consecutively. Let the set of such histories be denoted by

Z ′′. I will refer to these as histories with perpetual disagreement.

Let the set of all terminal histories be given by Z = Z ′ ∪ Z ′′.

Let Ui : Z → R denote the payoff for player i ∈ N of the negotiation game.

3Formally, this game is similar to that used in the farsighted stable set for games, which is discussed at
length in the literature review in section 6.

4A previous working paper version considered the extension of non-simultaneous proposals where the
main insights are upheld.
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Whenever there is an agreement, it is assumed that the payoff is that of the agreed-

upon action profile. Formally, whenever z = (a1, ..., ak) ∈ Z ′, that is a history that ends in

agreement, let Ui(z) = ui(a
k) for all i ∈ N .

Whenever there is perpetual disagreement, the payoff is defined to be between the lim inf

and lim sup of the utility in the underlying game of the proposals made.5 Formally, whenever

z = (a1, a2, ..., ak, ...) ∈ Z ′′, that is a terminal history with perpetual disagreement, I assume

that Ui(z) ∈ [lim inft→∞ ui(a
t), lim supt→∞ ui(a

t)]. This assumption, which is primarily

used to prevent discounting and have payoffs pinned down by agreement outcomes, will be

discussed more at length shortly.

At each round of the negotiation game, before agreements have been made, agents

consider all previous proposals, both of themselves and others, and decide on a new proposal

to make. With this, strategies map each partial history to a new proposal of what they will

play in an underlying game. Formally, at each partial history, h ∈ H the strategy of i ∈ N
dictates the proposal i would make in the next round: si : H → Ai. Let Si be the space of

all such mappings. Let s : H → A be the joint strategy, such that s(h) = (si(h))i∈N .

For a partial history h ∈ H and a joint strategy s let (s|h) denote the continuation

history of h given by s. That is, (s|h) = z ∈ Z such that z = (h, a′,1, a′,2, ...., a′,k, ...)

where a′,1 = s(h), a′,2 = s((h, a′,1)), a′,k = s((h, a′,1, a′,2, ..., a′,k−1)). With some abuse of

notation, let Ui(s|h) = Ui(z
′) when z′ ∈ Z ′. Additionally, let Ui(s|h) = Ui(z

′′), where

(s|h) = (h, z′′) ∈ Z ′′, that is, only take the continuation of the history h for perpetual

disagreement. When z = (a1, a2, ..., ak) ∈ Z ′, i.e. an agreement is made, let a(z) = ak and

ai(z) = aki .

The structure of the negotiation game has some similarities to the structure of repeated

games, due to the structure of the partial histories and payoff of perpetual disagreement.

There are a few important differences. Firstly, repeated games only have one type of termi-

nal history, where the underlying game has been repeated the specified number of times, be

that some finite number or infinitely. This negotiation game allows for two distinct types

of terminal histories, those with agreement (finite) and those without (infinite). Secondly,

repeated games use flow payoffs, receiving a payoff in each period of play to guide strategic

behaviour. This negotiation game only allows for payoffs to be realised upon termination.

Identical disparities between negotiation games and repeated games are common in the

literature (see Kalai 1981; Bhaskar 1989; Kimya 2020; Nishihara 2022, etc.).

5A previous working paper version of the paper considered alternative specifications, such as an exogenous
outside option, where the main insight of inefficiency is upheld.
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2.1. Discussion of Perpetual Disagreement Payoffs

Recall that the perpetual disagreement payoffs are such that

Ui(z) ∈ [lim inf
t→∞

ui(a
t), lim sup

t→∞
ui(a

t)]

for z ∈ Z ′′. This restriction is consistent with a standard probabilistic termination model,

where the proposal today is implemented with probability (1− δ) for each period, while the

process continues with probability δ, taking δ to 1. Therefore, this can also be interpreted

as a limiting version of the condition used within Kimya (2020), where there is a probability

that the negotiation will end at the currently proposed actions.6 This is formalised by the

following lemma, and the proof is provided in the appendix.

Lemma 1. For z = (a1, a2, ..., at, ...) ∈ Z ′′

lim
δ→1

(1− δ)
∞∑
t=1

δt−1ui(a
t) ∈

[
lim inf
k→∞

ui(a
k), lim sup

k→∞
ui(a

k)

]
By taking the view that the payoff of perpetual disagreement can take on any value from

this set it weakens the reliance on the specific method of confirmation for agreement. So

long as this confirmation is simultaneously made by all agents, the results would remain the

same. To see this, notice that any payoff in the underlying game that is proposed countably

infinitely many times can be used for the payoff of perpetual disagreement. Equally, if more

than one profile of proposals is made a countably infinite number of times, one can easily be

ignored. With this, it is possible to use a proposal to specifically avoid agreement, without it

being used within the payoff of perpetual disagreement. Therefore, a proposal could be used

to avoid a consecutive repetition without impacting payoffs. With this, one may consider a

single action of the underlying game being used as an “object” button, while confirmation

of the previous choice is seen as an “accept” button, and unanimity of acceptance is needed

for agreement. Given lemma 1, one interpretation of the payoff of perpetual disagreement

is that there is an ε probability of each player mistakenly pressing accept with ε taken to 0.

This would be independent of the payoff that would be received if no agreement is made,

conditional on such “trembles”.

This specification may also embed the approach of infinitely repeated games with no

discounting: i.e. using the limit of means criteria when well defined (Rubinstein, 1994;

Aumann and Shapley, 1994) where joint commitment to continue to play an agreement

action profile is modelled.

6Similar notions also exist in the context of Rubinstein (1982) bargaining, where Busch and Wen (1995)
take a game to be played in each rejection phase, which is implemented with probability 1−δ and continuation
occurs to a new proposal happens with probability δ, allowing for an endogenous outside option.
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2.2. Solution Concept

As the negotiation game is used in order to reach an agreement, in each period each agent

will signal the agreement action they would like to take.7 As this is the case, we must

define the set of agreement actions for each player. Let A∗i (s) be the set of agreement

outcomes for player i under the strategy profile s. With this, in equilibrium s∗i (h) ∈ A∗i (s∗)
for all histories, h ∈ H. This will be referred to as respecting signalling of agreement for

s∗. This prevents threatening to use unagreeable outcomes in the event of deviations.8

The idea here is that if an agent were to propose an action it must be because they see

some possibility of agreeing to it, and therefore do not propose actions they would never

agree to. This ensures that payoffs are defined only with respect to agreement outcomes

rather than any possible outcome. This negotiation protocol defines a dynamic game with

complete information therefore Subgame Perfect Equilibrium (SPE) is well defined and

appropriate. This does not restrict deviations to respect s′i(h) ∈ A∗i (s
∗), and therefore

agents are effectively permitted to change the agreement actions within the negotiation.

The following defines a Negotiated Binding Agreement formally:

Definition. a∗ is a Negotiated Binding Agreement if there exits an equilibrium s∗ of the

negotiation game such that:

1. s∗(∅) = a∗.

2. s∗ is a Subgame Perfect Equilibrium.

3. s∗ respects signalling of agreement, i.e. for all i ∈ N,h ∈ H, s∗i (h) ∈ A∗i (s∗) where

A∗i (s
∗) = {ai ∈ Ai|ai = ai(s

∗|h) for some h ∈ H such that (s∗|h) ∈ Z ′}

is the set of all possible agreement outcomes for player i ∈ N .

I will occasionally refer to s∗ satisfying these conditions as an equilibrium.

A few important points are worth noting. Firstly, as the respect for agreement signalling

is defined with respect to the possible agreement outcomes induced by the strategy profile

itself, this definition requires an internal consistency notion to apply. Therefore, A∗(s∗)

7A previous working paper version considered when proposals of action profiles are instead considered
where the key takeaways are upheld.

8It is clear that without this restriction, and when taking the payoff to be the lim inf for perpetual dis-
agreement, a folk theorem applies. This is as perpetual disagreement can always make up part of equilibrium
and players can alternate between the lowest individually rational outcomes for each player, ensuring any-
thing is possible. However, this relies on a very particular specification of the perpetual disagreement payoff,
and would not be robust outside of that, while the results provided in the remainder of the paper will be.
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is self-generating. Further, by this definition, the set of agreement outcomes is always

non-empty.

One important feature is the definition does not imply an immediate agreement must

be made and there may be mis-coordination in the signalling in early periods. However,

as there is no discounting, there is no cost associated with this. Note that any agreement

outcome could be a Negotiated Binding Agreement as one can simply “shift” the strategies

starting from any history h to start from the initial history. Further, if any two strategies

lead to distinct agreement outcomes, one could perform the same reasoning to realise the

union of the set of agreement outcomes would also be consistent with agreement outcomes

for some other SPE. With this, studying the set of agreement outcomes A∗(s∗) and the set

of possible Negotiated Binding Agreements is one and the same.

3 Negotiated Binding Agreement Action Profiles for Two-Player Games

In this section, I provide a full characterisation of the set of all possible Negotiated Binding

Agreements for two-player games where the underlying action space is compact and the

utility function is continuous. As outlined in the introduction, the logic of the characterisa-

tion is as follows. Each player will be willing to agree to an outcome if it is better than the

worst possible agreement from said players perspective. Given this, there is a “punishment”

agreement for each player which gives the worst possible agreement payoff. Call them a1

and a2 respectively. By definition, ui(a
i) ≤ ui(a) for any agreement outcome a, including

a−i. Further, it must be that player i is willing to agree to their worst agreement. Ensuring

that there is no unilateral deviation to this action profile in the underlying game will make

such punishment profile agreeable. Therefore, the Negotiated Binding Agreements can be

completely characterised with easy-to-check conditions using purely information from the

underlying game. To further demonstrate the logic of this result, I now turn to a Cournot

Duopoly with Linear Demand and Heterogeneous costs. I will also discuss the distinction

between Negotiated Binding Agreement outcomes, player specific punishment (Fudenberg

and Maskin, 1986; Abreu et al., 1994) and commitment folk theorems (Peters and Szentes,

2012).

3.1. Leading Example and Preview of Results for two-player games

Consider a simple Cournot Duopoly model as the underlying game, G. Let q1, q2 ∈ [0, b] =

Ai be the quantities produced and the inverse demand be given by p(q1, q2) = max{b− q1−
q2, 0}. Let firms have potentially heterogeneous costs, c1 and c2. Without loss of generality

let c1 ≥ c2 ≥ 0. Assume that firm 1 is a viable competitor: b+c2
2 ≥ c1. Profits are given by
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πi(q1, q2) = qi(p(q1, q2)− ci).

Notice that the best responses in the underlying game are given by:

q∗i (q−i) =

0 if q−i ≥ b− ci
b−ci−q−i

2 if q−i < b− ci

The Nash equilibrium of this underlying game is given by quantities of
(
b+c2−2c1

3 , b+c1−2c23

)
,

leading to payoffs of

((
b+c2−2c1

3

)2
,
(
b+c1−2c2

3

)2)
.

Consider a profile of (q∗1, q
∗
2) such that π1(q

∗
1, q
∗
2) ≥ 0 and π2(q

∗
1, q
∗
2) ≥ (c1 − c2)2. It will

be shown that the profile (q∗1, q
∗
2) is a Negotiated Binding Agreement action profile. Note

given the assumption that b+c2
2 ≥ c1 it follows that ( b−c22 )2 ≥ (c1 − c2)2 and therefore such

a profile exists.

Consider the following strategies. Take q1
2

= b− c1 and q2 = (b− 2c1 + c2, c1 − c2).

1. [Firm 1’s punishment for deviating] Let s∗(h′) = (0, q1
2
) whenever h′ = (q1, q2, ..., (q′1, q

∗
2)),

q′1 6= q∗1, h′ = (q1, q2, ..., (q′′1 , q
1
2
)), or (q1, q2, ..., (q′1, q

2
2
)), q′1 6= q2

1
.

2. [Firm 2’s punishment for deviating] Let s∗(h′′) = q2 whenever h′′ = (q1, q2, ..., (q
∗
1, q
′
2)),

q′2 6= q∗2, h′′ = (q1, q2, ..., (q
2
1
, q′′2)), or h′′ = (q1, q2, ..., (0, q′′2)), q′′2 6= q1

2
.

3. [No / multilateral deviations] Otherwise, s∗(∅) = s∗(h) = (q∗1, q
∗
2) for all other h.

The intuition of this strategy is as follows. In case a firm does not act as expected the

other proposes to partially flood the market. The partial element comes from the fact that

they can only choose a quantity that allows them to maintain positive profits, where they

understand the other firm will propose their best response in the underlying game. Notice

that if c1 > c2 firm 1 cannot entirely flood firm 2 out of the market while maintaining

positive profits. Note that this equilibrium can also be constructed as Markov perfect and

only depends on the proposal made in the previous period.

Now it will be shown that this strategy is an SPE satisfying consistency of agreement

signalling, that leads to the Negotiated Binding Agreement action profile (q∗1, q
∗
2).

To see this is satisfies consistency of agreement signalling, notice that signalling of

agreement applies as all three rules are absorbing, therefore the proposal itself must be

part of an agreement. Therefore all that is left is to check that s∗ is a Subgame Perfect

Equilibrium of the negotiation game.

Let us consider firm 1 and take case 1 (where firm 1 faces punishment for deviation).

In this case, regardless of what they propose, firm 2 will continue to propose b − c1 for all
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periods. Given this, firm 1 cannot profitably produce a positive quantity in any period, and

therefore any deviation leads to a payoff of at most 0 profits. This is not profitable as their

current strategy would provide them with a profit of 0 under the continuation. Now let us

consider case 2, the punishment of firm 2. Under the current strategy and rule, no deviation

will lead to an agreement of q2. Firm 1 receives a profit of 0 by construction. A deviation

from the prescribed strategies for firm 1 can only lead to firm 2 proposing b − c1 in every

period. With this, firm 1’s payoff would be pinned down by π1(q
′
1, b − c1) ≤ 0. With this,

it cannot be profitable to deviate. Finally, by the same logic, deviating from case 3, which

yields a weakly positive profit, cannot be profitable.

Now instead consider firm 2. Firstly, consider case 1 (where firm 1 is facing their

punishment). If firm 2 does not deviate, this will lead to a profit of π2(0, q
1
2
) = (b− c1)(c1−

c2). However, a deviation will lead to firm 1 proposing q2
1

in all subsequent periods. With

this, a deviation will lead to a payoff at most the static best response to q2
1
, π2(q

2) =

(c1 − c2)2. However, this can not be profitable due to the viable competitor assumption.

In a similar vein as firm 1, it cannot be that it is profitable for 2 to deviate from their

punishment due to statically best responding to their own punishment. They can also not

profitably deviate from case 3 as this would lead to an agreement for q∗. No deviation would

lead to a payoff of π2(q
∗) ≥ (c1− c2)2, while a deviation would lead to a payoff of (c1− c2)2.

Now we will study why the Negotiated Binding Agreement must be necessarily better

than that of the outlined punishment qi. Notice that due to both firms being restricted to

only making proposals that they can agree to at any history s∗,′(h) ∈ Q∗, where Q∗ is some

set of agreement outcome quantities. Now notice that for any s∗,′ it is not possible that

some firm i receives a lower payoff than the one prescribed by their minimal best response

payoff in Q∗, as they could elect to best respond statically in each period.9 As it is the case

that a) the qi−i ∈ Q∗−i which gives the minimal best response payoff is agreeable, and b) the

payoff received from it must be higher than the minimal best response, we conclude that

such an outcome of qi such that qi
i
∈ arg maxqi∈Qi πi(qi, q

i
−i) must be an agreement outcome.

This qi therefore pins down the lowest agreement payoff for i. Notice that if a profile is

included in Q∗, then any profile that provides both players with a higher payoff must also

be included in Q∗, as the same punishment could be used to incentivise the more efficient

agreement as the less efficient. in this case, as π1(q
1) = 0, it is clear that this will prescribe

the lowest best response payoff. Further, as any agreement outcome must guarantee firm

1 a payoff of at least 0, even with firm 2’s quantity taken into account, it must be that in

any agreement outcome q∗,′ ∈ Q∗ π1(q∗,′) ≥ 0. With this, taking into account firm 2’s best

response firm 1 can produce at most b− 2c1 + c2. This leads to a minimum payoff for firm

2 of (c1 − c2)2. Showing that above strategy fully characterises the q∗s that are Negotiated

9I leave the argument that Q∗−i is compact for the formal proof of theorem 1.
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Binding Agreements action profiles.

Note that this analysis provides us with some natural comparative statics and compar-

ison to player specific punishments of Fudenberg and Maskin (1986); Abreu et al. (1994)

and the commitment folk theorems of Peters and Szentes (2012). If c1 = c2, then both

players may agree to an outcome that provides any payoff above their individually rational

payoff of 0. In this case, the resulting set of agreement payoffs is identical to that of the

commitment folk theorem and the payoff space of individual punishments. However, if it is

not the case, and c1 > c2, then the agreement outcome of the commitment folk theorems

and the payoff space of individual punishments remains unchanged. However, under Ne-

gotiated Binding Agreements, the feasible set of outcomes is restricted to account for the

additional bargaining power of firm 2, given that firm 1 will not propose or accept outcomes

that are clearly detrimental to its own interests. In the most extreme case, when firm 1 is no

longer a viable competitor, c1 = b+c2
2 , we conclude that firm 2’s profit is π2(q

2) =
(
b−c2
2

)2
,

their monopoly profit.10 In this sense, the bargaining power of each firm is dictated by the

difference in marginal costs, i.e. the parameters of the underlying game they play, rather

than the bargaining protocol. Nonetheless, inefficient agreements can arise.

3.2. Results

The logic of the previous example is formalised in general by the following theorem.

Theorem 1 (Full Characterisation for Two-Player Games). For any game G such that

N = {1, 2}, Ai is a compact subset of a metric space for i = 1, 2 and ui is continuous, then

a∗ is a Negotiated Binding Agreement action profile if and only if ∃{a1, a2} ⊆ A such that:

1. aii ∈ arg maxai∈Ai ui(ai, a
i
−i).

2. ui(a
j) ≥ ui(ai) for all i 6= j.

3. ui(a
∗) ≥ ui(ai).

It is worth noting that any pure Nash equilibrium of the game G is supported by a

Negotiated Binding Agreement. Further, any action profile that Pareto dominates a pure

Nash equilibrium in the underlying game can be sustained by this reasoning. Indeed, a

natural question is why the so called Coase Theorem does not apply - that in this environ-

ment bargaining may not lead to an efficient outcome.11 To understand this, let us consider

10Note that if c1 >
b+c2

2
then the only outcome that can be supported by a Negotiated Binding Agreement

is q∗1 = 0, q∗2 = b−c2
2

, while under commitment folk theorems and individual punishments all individually
rational payoffs would still be supported.

11Note that there are not explicitly transfers, so in this respect the environment does not meet the
requirements set out by Coase. Nonetheless, even if the underlying game did have transfers the statement
may fail in this environment which is discussed within the next subsection.
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the Nash equilibrium of the game as a Negotiated Binding Agreement action profile. One

may assume that if a player signals an action that can lead to a more efficient outcome

the other would follow suit, inferring this change as an attempt to reach efficiency, to the

benefit of both players. If this would be the case, an inefficient Nash equilibrium outcome

would not be consistent with an SPE of the negotiation game. However, if both agents had

correct beliefs that neither agent would change their proposal away from the Nash outcome

then this would not be profitable as confirmation of the more efficient outcome would not

occur–effectively, agents are free to infer nothing from the signals of others. This is purely

driven by the need for multilateral confirmation and the strategic nature of negotiation.

Indeed, many negotiation and bargaining protocols do not lead to efficiency for various

reasons including the one stated above. The 2-player bargaining model of Rubinstein (1979)

does necessarily lead to efficiency when the cost of time is constant, rather than hyperbolic

as there may be equilibria with costly delay. In the hyperbolic discounting case, when

the outside option of Rubinstein’s model is taken to be endogenous, a la Busch and Wen

(1995), a folk theorem is obtained, although for a different reason from this paper, as

the endogenous outside option there need not be (and in fact is not permitted to be)

consistent with agreement. When there are more than two-players, additional restrictions

on the equilibrium notion are needed to regain efficiency (Chatterjee et al., 1993) due

to potential strategic co-ordination and multiple agents needing to confirm, where in their

model inefficiency is driven by delay as opposed to inefficient agreements per se. The work of

Harstad (2022) shows that a pledge-and-review bargaining game for contributions to a public

good may also lead to inefficient outcomes due to the mutual confirmation needed. However

this is shown for only the class of public goods games and considers a slightly different

bargaining protocol. Additionally, inefficiencies are common in the contracting literature,

for instance in contractable contracts (Tennenholtz, 2004; Kalai et al., 2010; Peters and

Szentes, 2012) and strategic contract settings (Jackson and Wilkie, 2005; Yamada, 2003;

Ellingsen and Paltseva, 2016).

3.3. Discussion of Transferable Utility Games

One important class of games are those with transferable utility. That is, agents’ may

receive utility from actions with an underlying game, while they may also make (potentially

contingent) transfers between them. A natural question in light of the Coase Theorem is

whether the inclusion of transfers can overcome the inefficiencies in the setting of mutual

confirmation. It turns out this is not the case.

To study this more concretely, we can represent a game that allows for transferable utility

(with two players) in the following way: G = 〈{1, 2}, (vi)i∈{1,2}, (Ai×R
|A1×A2|
+ )i∈{1,2}〉 where

12



ui(a, ti, tj) = vi(a) + tj(a)− ti(a). That is, agents’ receive their utility from actions, vi and

(contingent) utility from net transfers tj(a) − ti(a). Here, transfers are non-negative - i.e.

player i can decide how much utility to transfer to player j 6= i, but cannot decide how much

they receive. In this transferable utility game it is possible to find best response payoff that

are represented by ti(a) = 0 for all a ∈ A and a∗i ∈ argmaxai vi(ai, aj), i.e when no transfers

occur and player i best responds based on vi. In fact, as transfers are non-negative, these

will provide the lowest best response payoffs.

Therefore the characterisation and associated payoffs the lower bound of utility remains

in respect to the non-transferable component, and therefore the inclusion of transfers makes

no substantial difference to the possible outcomes. For example, in the Cournot Duopoly

example, the ability to transfer utility would only convexify the space, but not change the

message of inefficiencies nor the characterisation. The same is true for the results regarding

n-player games for identical reasons.

4 Negotiated Binding Agreement Action Profiles for n-Player Games

In this section, I will explore the necessary and sufficient conditions for n-player games.

First, I show that the idea of the characterisation for two-player games is still sufficient for

n-player games. Therefore the key takeaway of potentially inefficiencies and their “flavour”

persists. However, it is no longer necessary. This is as the signalling of agreement condition

does not impose strong coordination on the action profile proposed by players. Therefore

there may be profile proposed by other players, while consistent with the signalling of

agreement, itself may not be mutually agreeable. However, when strong conditions on

coordination of agreement outcome profiles, i.e. not only does a player have to propose

an action they would agree to, but the profile of actions proposed by any set of agents is

such that they would jointly agree, then individual punishment condition returns to being

necessary. Outside of imposing this condition, I show that an iterative individual rationality

constraint on the underlying game, which I call iterated elimination of individually irrational

actions, is necessary for any Negotiated Binding Agreement or agreement outcome.

4.1. Sufficiency

The logic of the sufficient condition for agreement outcomes of two-player games can be

generalised to n-player games. Specifically, an outcome can be a Negotiated Binding Agree-

ment action profile if each player has a punishment profile that they best respond to in the

underlying game, they prefer to punish than being punished, and the candidate outcome is

preferred to their punishment.
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Theorem 2. Take any underlying game, G, such that ∃{a∗, a1, ..., an} ⊆ A such that:

1. aii ∈ arg maxai∈Ai ui(ai, a
i
−i)

2. ui(a
∗) ≥ ui(ai)

3. ui(a
j) ≥ ui(ai) for all i, j ∈ N

Then a∗ is a Negotiated Binding Agreement action profile.

The proof follows identical logic to that of the sufficiency of 1 and therefore is omitted.

4.1.1. An Equilibrium Refinement where Outcomes are Fully Characterised

Further justification for the general sufficient conditions can be found. For a refinement of

the solution concept, where the focus is upon SPE that end in immediate agreement follow-

ing from each history, the sufficient conditions for agreement outcomes are also necessary.

This No Delay condition applies for all possible histories, and therefore applies both on

and off the path. I refer to this solution as No Delay SPE and is similar to the no delay

equilibrium proposed by Chatterjee et al. (1993), who impose this requirement to regain

efficiency in their setting. Therefore, for the class of No Delay SPE, I fully characterise the

set of outcomes that can be supported. This refines the solution concept to ensure that all

proposals of n− 1 players are mutually agreeable (for some action of the remaining player),

and therefore strengthens the requirement of signalling of agreement.

Definition 1 (No Delay Subgame Perfect Equilibrium). s∗ is a No Delay Subgame Perfect

Equilibrium supporting a∗ = a(s∗|∅) if:

1. s∗ is a Subgame Perfect Equilibrium of the negotiation game.

2. No Delay: For all partial histories h ∈ H, s∗(h) = s∗(h, s∗(h)) = a∗(s∗|h).

Proposition 1. For any underlying game G such that Ai is a compact subset of a metric

space and ui is continuous for all i ∈ N , a∗ is supported by a No Delay Subgame Perfect

Equilibrium, s∗, if and only if ∃{a1, ..., an} ⊆ A such that:

1. aii ∈ arg maxai∈Ai ui(ai, a
i
−i)

2. ui(a
∗) ≥ ui(ai)

3. ui(a
j) ≥ ui(ai) for all i, j ∈ N
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The proof is identical to that of 1 and therefore is omitted.

Finally, note that within the literature on agreements it is common to use the notion

of Perfect Equilibrium of Selten (1988), for instance in Kalai (1981) and Bhaskar (1989).

Notice that this does not have a significant change in the results, and to ensure the sufficient

conditions for agreement outcomes remain true for this refinement, as well as the signalling

of agreement and agreement for all histories condition, the only check is to ensure that the

action aii is not weakly dominated in the underlying game G.

Before moving to the necessary conditions for the Negotiated Binding Agreement action

profiles, I turn to the following example to preview the logic.

4.2. Preview of Necessary Conditions n-player games

Let the underlying game G be a 3 player single unit First Price Auction with heterogeneous

valuations. Specifically, there are three bidders, N = {1, 2, 3}. Each bidder has a value for

the good, vi. It is assumed that v1 = 6, while v2 = 5 and v3 = 2. Each bidder may bid

an integer from 0 to 7, bi ∈ {0, 1, .., 7}.12 The highest bidders wins the good with uniform

probability and pay their bid. Bidders who do not win the good receive a utility of 0.

Therefore utility is given by their probability of winning, multiplied by their surplus value.

Formally,

ui(b) =


vi−bi

| argminj∈{1,2,3} bj |
if i ∈ arg minj∈{1,2,3} bj

0 if i /∈ arg minj∈{1,2,3} bj

Firstly, can it be that any bidder agrees to the maximal bid, bi = 7, in a Negotiated

Binding Agreement action profile? If this were the case, bidder i would receive a strictly

negative utility, as they would certainly win the auction with positive probability and at

a price above their valuation. However, they could avoid such an outcome by deciding to

propose their own valuation in every round of negotiation, si(h) = vi for all h ∈ H. If they

did so, regardless of whether the negotiation game ended in agreement or perpetual dis-

agreement, they would receive a payoff of 0. More concretely, bidding bi = 7 is individually

irrational in the underlying game, which will be formalised in the next section, as they can

guarantee themselves a higher payoff. With this, it cannot be that agreeing to bid bi = 7 be

part of a Negotiated Binding Agreement, as such a strategy cannot be a Subgame Perfect

Equilibrium of the negotiation game. Given this, as signalling of agreement actions holds,

this action cannot be proposed by any agent.

Now consider whether it is the case that bidders 2 or 3 could agree to bid 6. By the

12The maximal bid being 7 is not important for the analysis, we only need to ensure payoffs are bounded
by including some maximum bid.
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previous argument, we conclude that agreeing to bid 6 will result in winning the good with

positive probability, as we know no bidder will ever bid 7. With this, as the valuations of

bidders 2 and 3 are below 6, it must be they receive a strictly negative payoff from such

an agreement. However, we can again consider a deviation of these firms in the negotiation

game to always propose their valuation, ensuring a payoff of 0. More concretely, bidding 6

is individually irrational for bidders 2 and 3 in the underlying game, again formalised in the

next section, as they can guarantee themselves a higher payoff, given that 7 cannot be bid,

and therefore cannot be agreed to. With this, we conclude that such an agreement cannot

be part of a Negotiated Binding Agreement. Again, this implies that a bid of 6 by players

2 and 3 cannot be proposed by the signalling of agreement action.

We can continue this induction, concluding that bidder 1 would also never bid 6 once

bidders 2 and 3 will not. Bidder 3 would never bid 5, due to this bid being iteratively

individually irrational in the underlying game.

By the same argument as ruling out such bids, we conclude that any Negotiated Binding

Agreement action profile must provide bidders 2 and 3 with a payoff of at least 0. Notice

in any Negotiated Binding Agreement it must be that bidder 1 receives a payoff of at least

1/2. In the worst possible stream of proposals for bidder 1 is that bidders 2 and 3 bid their

highest possible bid in every round of the negotiation game, 5 and 4 respectively. Given

this, bidder 1 can simply respond by bidding 5 in every round of the negotiation game,

guaranteeing a payoff of 1/2.

Given the sufficient conditions provided lead to the same conclusion, this completely

characterises the set of Negotiated Binding Agreement outcomes in this context. However,

the logic of the necessary and sufficient conditions are distinct. The sufficient conditions

were based on player-specific punishments, while the necessary conditions are based on

iteratively ruling out outcomes that could not be agreed to.

With this, I move on to provide general necessary conditions, which this example has

already pointed to.

4.3. Necessary Conditions

Now I will show that any action proposed at some history must survive a procedure of

iterated deletion of individually irrational actions in the underlying game, which to my

knowledge is a novel definition. This procedure works inductively as follows. If an individ-

ual’s action, regardless of the action profile of other agents, always provides a payoff that

is not individually rational, in the sense of inf-sup utility, then it is individually irrational.

In the iterated elimination we can therefore remove said actions from consideration. Now,

upon deleting such actions, we proceed inductively. If an individual’s action, regardless of
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the action profile of other agents chosen within the set that has survived iterated deletion

of individually irrational actions, always provides a payoff that is not individually ratio-

nal (on the remaining actions), then it does not survive iterated deletion of individually

irrational actions. The formal definition of individual irrational actions and the iterated

deletion notion associated are given below.

Definition 2 (Individually Irrational actions given C−i ⊆ A−i). For a game G, ai ∈ Ai is

individually irrational given C−i ⊆ A−i if:

inf
a′−i∈C−i

sup
a′i∈Ai

ui(a
′
i, a
′
−i) > sup

a−i∈C−i

ui(ai, a−i)

Denote the set of actions that are individually irrational given C−i by Di(C−i).

This notion is similar to the notion of absolute dominance by Salcedo (2017), simul-

taneously developed in Halpern and Pass (2018), who instead compare the best case of

one action and the worst case of another, whereas I compare based on the best case of an

action compared to the inf-sup.13 Therefore the set that survives elimination of individ-

ually irrational actions is smaller. If in a normal form game there is a single action that

is not absolutely dominated given A−i, then this action is an obviously dominant strategy

as defined by Li (2017). Therefore if a single action is not individually irrational it is also

obviously dominant.

Definition 3 (Iterated Deletion of Individually Irrational Actions). For a game G, let

Ã0
i = Ai for all i ∈ N . Let Ã0

−i = A−i. Then for all m > 0 let Ãmi = Ãm−1i \Di(Ã
m−1
−i )

where Ãm−1−i = ×j 6=iÃm−1j .

The set of actions that survive iterated deletion of individually irrational actions, or

those that are iteratively individually rational, for i is given by IIRi =
⋂
m≥0 Ã

m
i . Let

IIR = ×i∈NIIRi.

Given these definitions, we can present the first necessary condition of Negotiated Bind-

ing Agreement action profile profiles and equilibrium strategies in n-player games, which

states that any proposal, at any history – on and off the path of play, must survive iterated

elimination of individually irrational actions in the underlying game. This exact process

was used in order to find the possible proposals in the first price auction with heterogeneous

values.

Theorem 3. If s∗ is an equilibrium then for all h ∈ H, s∗i (h) ∈ IIRi.
13The notion of absolute dominance was more recently used by Doval and Ely (2020), who extend this

concept to incomplete information.
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To better understand the set of actions that survives iterated elimination of individually

irrational actions, note the following. In a large class of games, non-emptiness of the set of

actions that are iteratively individually rational is implied by the fact that the set of actions

that survive iterated elimination of never best responses to pure actions, a refinement of

rationalizable strategies as defined by Bernheim (1984); Pearce (1984), also survive iterated

elimination of individually irrational actions.14 This is formalised in the following definition

and lemma.

Definition 4. Let ai ∈ Ai be a never best response to a pure action in C−i ⊆ A−i if, for

all a−i ∈ C−i there is some a′i ∈ Ai for which ui(a
′
i, a−i) > ui(ai, a−i). Denote the set of

actions that are never best responses to pure actions in C−i by NBRi(C−i).

Let B0
i = Ai. Let Bk

i = Bk−1
i \NBRi(Ak−1−i ). Let Bk = ×i∈NBk

i and Bk
−i = ×j 6=iBk

j . Let

the set of actions that survive iterated elimination of never best responses to pure actions

be given by IENBR =
⋂
k≥1B

k.

Lemma 2. The set of actions that survive iterated elimination of never best responses to

pure actions also survives iterated elimination of iterated deletion of individually irrational

actions: IENBR ⊆ IIR.

Note that the set of actions that survives iterated elimination of never best responses

is necessarily non-empty in finite games. Typically even more profiles may survive iterated

elimination of individually irrationally actions than never best responses to pure actions.

To see this, consider the following underlying game.

Example 1. Let the underlying game, G, be the following prisoners’ dilemma.

1\2 C D

C 3,3 0,4
D 4,0 1,1

D is strictly dominant for both players, hence (D,D) is the only profile that survives

iterated elimination of never best responses to pure actions. Yet, in IIR, all action profiles

survive. This is as the maximum payoff for playing C given by 3. The individually rational

payoff is given by 1. Therefore C is not individually irrational. H

Any action profile satisfying the conditions of the sufficient conditions will be held in

IIR, and therefore all pure Nash equilibria must be included.

The next result provides further necessary conditions, providing a relationship between

to Negotiated Binding Agreement payoffs with iterative individual rationality considerations

in the underlying game.

14As all proposals are pure the notion is defined with respect to pure actions. It is a simple extension to
show that when mixed proposals are permitted similar results hold in relation to a version of rationalizability.
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Theorem 4. if s∗ is an equilibrium then:

Ui(s
∗|h) ≥ inf

a′−i∈IIR−i

sup
a′i∈Ai

ui(a
′
i, a
′
−i)

for all h ∈ H and i ∈ N .

Therefore if a∗ is a Negotiated Binding Agreement action profile then:

ui(a
∗) ≥ inf

a′−i∈IIR−i

sup
a′i∈Ai

ui(a
′
i, a
′
−i)

for all i ∈ N .

I illustrate the use of this result with the same underlying prisoners’ dilemma game as

in example 1.

Example 1. revisited Again consider the underlying game, G, to be that of example 1.

No actions are individually irrational for any player, as previously argued. However,

notice that the min-max payoff for each player is 1. The min-max is given by 1, as the

worst outcome is the other player selecting D. Therefore we conclude that (D,C) and

(C,D) cannot be a Negotiated Binding Agreement. However, the necessary conditions do

not rule out the possibility of (C,C). H

Note that for any underlying game the inf-sup restricted to the set of actions that

survives iterated elimination of individually irrational actions is always weakly higher than

the inf-sup without this restriction.

Remark 1. For any underlying game, G, such that ui is well defined then

infa′−i∈IIR−i
supa′i∈Ai

ui(a
′
i, a
′
−i) ≥ infa−i∈A−i supai∈Ai

ui(ai, a−i).

Notice this inequality holds strictly within the leading example: the min-max payoff for

bidder 1 is 0, via other firms setting bids of 7, however the min-max payoff when we restrict

ourselves to IIR is 1/2.

The results of this section bear resemblance to the analysis of infinitely repeated games,

where individual rationality constraints must be satisfied. However, this iterated version

can be substantially more restrictive. For instance, in the First Price auction it would only

rule out bidders having a net negative valuation, and would not provide a lower bound on

the surplus of bidder 1.

Before moving forward, I point to the following corollary, which provides a class of game

for which the Negotiated Binding Agreements are fully characterised.

Corollary 1. If aNE is a pure Nash equilibrium of the underlying game G such that:
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ui(a
NE) = min

a−i∈IIR−i

max
ai∈Ai

ui(ai, a−i)

i.e. the IIR min-max profiles are mutual, then a∗ is a Negotiated Binding Agreement if

and only if ui(a
∗) ≥ ui(aNE).

This is a direct implication of theorems 2 and 4. This provides a class of games for which

the Negotiated Binding Agreements are fully characterised by action profiles that Pareto

Dominate a Nash equilibrium in the underlying game. Specifically, if a Nash equilibrium

provides agents with their individually rational payoffs over the set of actions that survives

iterated deletion of individually irrational actions in the underlying game, then an action

profile is a Negotiated Binding Agreement if and only if said action profile Pareto Dominates

this Nash equilibrium of the underlying game. This is the case in the three bidder first price

auction used as a leading example for this section.

5 Coalitional Deviations

In principle, allowing for jointly beneficial (multilateral) deviations can resolve inefficiencies.

However, as will be discussed shortly, this is not always the case since allowing for such

deviations can lead to inexistence.

To study this, I allow for a collection of permissible coalitions, where a coalition may

jointly deviate. The richest of all such possibilities is the power set of N , which allows

any possible subset of players to jointly deviate. I will look for the most robust form of

equilibrium, that prevents any permissible coalition from deviating, where coalitions are

permitted to agree to any deviation.

Allowing for any possible deviation may be seen as overly permissive, as it increases the

possibility of equilibrium nonexistence. In principle, one might prefer to restrict the set of

permissible deviations. For example, we could require deviations to be the result of some

form of agreement among coalition members. However, this would require assumptions

about the internal negotiation procedures within coalitions. Do agents have veto power?

Can they jointly pre-commit to exclude certain outcomes from any agreement? Differ-

ent assumptions about these processes can yield markedly different predictions about the

resulting equilibria.

If we aim for predictions that are robust to the specifics of how coalitional negotiations

unfold, it is reasonable to allow any deviation that a coalition can agree upon. In such

cases, the existence of an equilibrium under unrestricted deviations guarantees equilibrium

existence under any more limited set of deviations.
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The analysis below makes two key points. First, if the stated conditions are satisfied, the

resulting equilibrium is robust to group deviations. Second, if these conditions are not met,

equilibrium may fail to exist, and predictions become sensitive to the precise structure of

permitted deviations. In such cases, no general claims about efficiency gains from coalitional

deviations can be made.

5.1. Definitions

I first introduce the notation of a coalition and coalition configuration. A coalition configura-

tion defines the set of coalitions that may make a binding agreement within the negotiation.

I let a coalition configuration be denoted by C, and only restrict C to be a cover of N . That

is, for all i ∈ N , there is some coalition C ∈ C such that i ∈ C. For a coalition configuration

C, if C ∈ C I will refer to C as permissible.

Further to this, for a non-empty coalition C ∈ C, let aC = (ai)i∈C , AC = ×i∈CAi,
sC = (si)i∈C and SC = ×i∈CSi. Let a−C = (ai)i/∈C , A−C = ×i/∈CAi, s−C = (si)i/∈C

and S−C = ×i/∈CSi. For a set B ⊂ A, which may or may not have a product structure,

let BC = {aC ∈ AC |∃a′−C ∈ A−C s.t. (aC , a
′
−C) ∈ B} and B−C = {a−C ∈ A−C |∃aC ∈

AC s.t. (aC , a−C) ∈ B}.

With this, I go on to define the natural extension of Subgame Perfect Equilibrium when

coalitions are permitted to jointly deviate. This will be referred to as C-Subgame Perfect

Equilibrium and will require that strategies are such that, at no history of the negotiation

game, is there a way for any permissible coalition of players, C ∈ C, to jointly deviate and

improve the utility of all players within that coalition.15

Definition (C-Subgame Perfect Equilibrium). s∗ is a C-Subgame Perfect Equilibrium if,

for all partial histories h ∈ H, there does not exist a non-empty coalition C ∈ C and a joint

strategy sC ∈ ×i∈CSi, such that ui(sC , s
∗
−C |h) > Ui(s

∗|h) for all i ∈ C.

This concept generalises a number of solution concepts. Firstly, whenever C = {{i}i∈N},
C-Subgame Perfect Equilibrium and Subgame Perfect Equilibrium of Selten (1965) coincide.

Further to this, whenever {{i}i∈N} ⊂ C, C-Subgame Perfect Equilibrium is a refinement of

Subgame Perfect Equilibrium. Whenever C = 2N\{∅}, C-Subgame Perfect Equilibrium

coincides with the concept of strong perfect equilibrium of Rubinstein (1980), in this case

I will refer to this concept as strong in its place. Note that any strong Subgame Perfect

Equilibrium would also be a C-Subgame Perfect Equilibrium for any C. Finally, when C is a

15In essence, this is assuming that, at any history, any permissible coalition may write a private binding
agreement that dictates the behaviour they will take going forward. If the agreements were public, the
concept would be closer to a coalitional version of Tennenholtz (2004)’s program equilibrium.
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partition of N , C-Subgame Perfect Equilibrium can be seen as the extension of coalitional

equilibrium of Ray and Vohra (1997) to extensive form games.

To find the set of C-Negotiated Binding Agreement, C-Subgame Perfect Equilibrium of

the negotiation game and require a signalling of agreement condition, as previously done.

Definition 5 (C-Negotiated Binding Agreement). a∗ is a C-Negotiated Binding Agreement

action profile if there is some strategy profile of the negotiation game where

1. s∗(∅) = a∗.

2. s∗ is a C-Subgame Perfect Equilibrium.

3. s∗ respects coalitional signalling of agreements, i.e. for all C ∈ C, h ∈ H s∗C(h) ∈
A∗C(s∗) where

A∗C(s∗) = {aC ∈ AC |aC = aC(s∗|h) for some h ∈ H such that (s∗|h) ∈ Z ′}

is the set of all possible agreement outcomes for coalition C ∈ C.

When C = 2N\{∅} I refer to this as a strong Negotiated Binding Agreement action

profile. Whenever {i}i∈N ⊂ C, C-Negotiated Binding Agreements are a subset of Negoti-

ated Binding Agreements and therefore necessary conditions still hold. However, we can

strengthen these conditions, and provide conditions that hold for a general coalition con-

figuration C. I show that natural extensions of the necessary and sufficient conditions used

for Negotiated Binding Agreement hold for C-Negotiated Binding Agreement.

5.2. C-Negotiated Binding Agreement Outcomes

5.2.1. Necessary Conditions

First, I will show that in any C-Negotiated Binding Agreement the action profile must sur-

vive a procedure of iterated deletion of coalitionally irrational actions on the underlying

game. This procedure generalises the notion of Iterated Elimination of Individually Irra-

tional actions to allow coalitions of players in C to be the unit of decision making. This

provides a recursive version of Aumann (1961)’s β-core, where the “punishments” them-

selves must be justified. This, therefore, provides one answer to the question posed by Scarf

(1971), providing a notion of the core for normal form games that is fully justified.16

16Chakrabarti (1988) offers a different solution to this question by taking the punishments to be such that
they cannot be coalitionally dominated for any action.
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Definition 6. For any underlying game G, for a coalition C, a joint action aC ∈ AC is

coalitionally irrational with respect to B−C ⊆ A−C if, for some a′C : B−C → AC :

inf
a−C∈B−C

ui(a
′
C(a−C), a−C) > sup

a−C∈B−C

ui(aC , a−C) ∀i ∈ C

Denote the set of joint actions that are coalitionally irrational with respect to B−C by

DC(B−C).

Definition 7 (Iterated Elimination of Coalitionally Irrationality Actions with Respect to

C). For any game G, let Ã0(C) = A. For m > 0 let:

Ãm(C) = Ãm−1(C)\

[⋃
C∈C

[
[DC(Ãm−1(C)−C)]×A−C

]]

Let the set of action profiles that survive iterated elimination of coalitionally irrational

actions, or those that are iteratively coalitionally rational, with respect to C be denoted by

ICIR(C) where ICIR(C) =
⋂
m>0 Ã

m(C).

Note, unlike iterated elimination of individually irrational actions, iterated elimination

of coalitionally irrational actions may be empty, even in finite games. To see this, consider

the following example.

Example 2. Consider the following two-player game. Let C = {{1, 2}, {1}, {2}}.

1\2 L C R

T 20,0 20,0 20,0
M 0,7.5 0,7.5 30,5
D 10,10 0,0 0,0

Notice that only (M,R) and (D,L) survive iterated elimination of coalitionally irrational

actions for the coalition C = {1, 2}. However, D cannot survive elimination of individually

irrational actions for player 1, as the maximum payoff of D is 10 while the min-max utility

for player 1 is 20. Therefore we conclude that within the first round of iterated elimination

of coalitionally irrational actions only (M,R) survives. This implies that R is individually

irrational with respect to M for player 2, as the profile (M,R) gives a payoff of 5 while

the min-max utility, when restricting attention to player 1 playing R is 7.5. Therefore

ICIR(C) = ∅. H

ICIR(C) of course may be non-empty, even when a rich set of coalitions are permitted.

Before doing so, notice the following. If C′ ⊂ C, then ICIR(C) ⊆ ICIR(C′). Given this, if

some action profile survives ICIR(2N\{∅}) then it survives any other C.

Example 3. Consider the following two-player game. Let C = {{1, 2}, {1}, {2}}.
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1\2 L C R

T 2,7 2,8 0,6
M 1,4 0,8 2,3
D 1,9 0,8 20,7.5

Notice that (D,R), and (D,L) and (T,C) are the set of Pareto efficient outcomes,

therefore, as {1, 2} ∈ C, it must be all other action profiles are ruled out in Ã1(C). Further,

R is individually irrational for 2 as it provides a payoff of at most 7.5, while the min-max

payoff is 8. We conclude that Ã1(C) = {(D,L), (T,C)}. Now notice that D is individually

irrational for 1 with respect to Ã1
−1, where Ã1

−1 = {L,C}, as the highest payoff that D can

provide is 1 while the min-max payoff over this set is 2. We conclude that Ã2(C) = {(T,C)}.
Finally, note that neither T or C are individually irrational givenB−1 = {C} andB−2 = {T}
respectively. Therefore ICIR(C) = {(T,C)}. H

One condition that ensures non-emptiness of ICIR(C), regardless of the coalition con-

figuration, is the existence of a strong Nash equilibrium.

Lemma 3. For any Strong Nash equilibrium aSNE of G, aSNE ∈ ICIR(C) regardless of C.

A similar necessary condition to theorem 3 holds, linking ICIR(C) of the underlying

game to the C-Negotiated Binding Agreements.

Theorem 5. For any C-Subgame Perfect Equilibrium satisfying coalitional signalling of

agreement, s∗, and any h ∈ H, s∗(h) ∈ ICIR(C).

Notice once again that this holds for all histories. Further to this, by the definition

of ICIR(C), whenever N ∈ C, it follows that no proposal is coalitionally irrational for

the coalition N . This implies that only proposals that are weakly Pareto optimal in the

underlying game may be used.

The following corollary links the observation surrounding the potential emptiness of

ICIR(C) of the underlying game to the emptiness of C-Negotiated Binding Agreement.

Corollary 2. If ICIR(C) = ∅ then no C-Negotiated Binding Agreement can exist.

This is an immediate implication of theorem 5. Note that this is possible, i.e. in

example 2, and may imply that there is no Negotiated Binding Agreement that is robust

to the concerns of coalitions for a specific coalition structure C.

A result analogous to theorem 4 also holds. This result will state that at any history

h, a C-Negotiated Binding Agreement must give a payoff that is coalitionally rational for

any coalition C in the underlying game, with respect to [ICIR(C)]−C . A payoff is not

coalitional rational, with respect to [ICIR(C)]−C , if, for any punishment a coalition can
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find some joint action aC ∈ AC such that the utility is higher for all agents. To understand

the implications of this result more fully, I define a notion of the β-core Aumann (1961),

which I refer to as the β-core with respect to ICIR(C).

Definition 8. a∗ ∈ A is in the β-core with respect to ICIR(C) if, there is no C ∈ C and

aC : [ICIR(C)]−C → AC such that infa−C∈[ICIR(C)]−C
ui(a

′
C(a−C), a−C) > ui(a

∗) for all

i ∈ C.

For an action profile to be in the β-core the payoff of this profile must be higher than

the coalitional rational with respect to A−i, in the sense that a coalition understands that

they can only be punished for a deviation with a specific profile of actions. However, the

actions used to prevent deviations are not necessarily justifiable. The β-core with respect

to ICIR(C) partially resolves this problem, as upon deviating the actions of others are

restricted to a set of actions that is consistent with respect to itself and is defined in a

similar way to the β-core restriction itself.

With this, I formalise the result connecting C-Negotiated Binding Agreement to the

β-core with respect to ICIR(C).

Theorem 6. For any C-Negotiated Binding Agreement s∗ must be such that, for any history

h, and for any coalition C ∈ C, there is no a′C : [ICIR(C)]−C → AC such that:

inf
a−C∈[ICIR(C)]−C

ui(a
′
C(a−C), a−C) > Ui(s

∗|h)

for all i ∈ C.

In other words, a(s∗|h) must be in the β-core with respect to ICIR(C) for all histories.

Note that it may be that an outcome is both Pareto efficient and individually rational

in the underlying game, yet it is not possible to sustain such an outcome via a C-Negotiated

Binding Agreement for {N, {i}i∈N} ⊆ C.

Example 4. Let the following two-player game be the underlying game G. Consider the

richest set of coalitions C = {{1}, {2}, {1, 2}} = 2N\{∅}.

1\2 LL L R RR

TT 6,6 0,4 1,12 0,0
T 4,0 0,0 7,2 1,1
D 12,1 2,7 4,4 0,8

DD 0,0 1,1 8,0 0,0

I have labelled the weakly Pareto efficient outcomes of G in bold blue font, and therefore

must be the only actions in Ã1 are {(TT, LL), (TT,R), (T,R), (D,LL), (D,L)}. No further

deletion can take place therefore:
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ICIR(2N\{∅}) = {(TT, LL), (TT,R), (T,R), (D,LL), (D,L)}

(TT,R) necessarily cannot be sustained in a strong Negotiated Binding Agreement, as

it provides a payoff of 1, while the min-max payoff, given that player 2 must choose from

[ICIR(2N\{∅})]2 = {LL,L,R}, is given by 2. Therefore we conclude that despite the fact

that (TT,R) is Pareto efficient in G, and provides a higher payoff than the min-max over

all possible profiles it cannot be sustained in a strong Negotiated Binding Agreement. H

With these results, I now turn to providing sufficient conditions for C-Negotiated Binding

Agreement.

5.2.2. Sufficient Conditions

To provide sufficient conditions for the outcomes of a C-Negotiated Binding Agreement, as

with theorem 2, I will rely on conditions of the underlying game G. To provide these condi-

tions, I again rely on a structure that does not focus on the deviation that a coalition takes,

but only on the deviating coalition. In this case, a coalition must prefer the punishment

of others to their own and a coalition must not be able to improve all members’ utility

by changing their action profile in G, holding the punishment used against them constant.

Note, due to the rich deletion that can take place, the inclusion of such profiles in ICIR(C)
is now required and not implied.

Theorem 7. Take any underlying game such that there is some a∗ = aN ∈ ICIR(C) and

for all C ∈ C\N ∃aC ∈ ICIR(C) such that:

1. @a′C ∈ AC such that ui(a
′
C , a

C
−C) > ui(a

C) for all i ∈ C

2. for all C ∈ C there is some i ∈ C such that ui(a
∗) ≥ ui(aC)

3. For all C,C ′ ∈ C there is some i ∈ C such that ui(a
C′) ≥ ui(aC)

Then a∗ can be supported in a C-Negotiated Binding Agreement.

Combining this result with the result of lemma 3, which states that if a strong Nash

equilibrium of G exists it is within ICIR(C), implies that any strong Nash equilibrium

of G can be supported in a C-Negotiated Binding Agreement. However, these conditions

can apply in underlying games with no strong Nash equilibrium, and therefore are a more
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general set of conditions.17 To see this, consider the following example.

Example 4. revisited Consider again the following two-player game as the underlying

game, G, given in example 4. All possible coalitions are permitted, C = 2N\{∅}.

Here there is no strong Nash equilibrium of G. In fact, as there is no pure Nash

equilibrium in G, there is no pure coalition proof Nash equilibrium. However, the conditions

of theorem 7 apply.

Given the previous analysis we may take aN = a∗ = (TT, LL), a1 = (D,L) and

a2 = (T,R). Concluding that (TT, LL) can be sustained in 2N\{∅}-Negotiated Binding

Agreement. H

The sufficient conditions for outcomes of C-Negotiated Binding Agreements presented

in theorem 7 can be seen as a further refinement of the β-core of Aumann (1961), where

within the β-core any constant action profile in G of those outside of a coalition may be used

in order to prevent deviations, whereas in this paper we must satisfy additional conditions

to ensure such a profile in G can be mutually justified by all coalitions. Note that this is

not necessarily true in the notion of the β-core with respect to ICIR(C), as some profiles

within ICIR(C) do not satisfy this notion of mutual coalitional rationality.

6 Literature Review

A number of papers have approached the question of which binding agreements can be made

for normal form games using an approach close to or inspired by the farsighted stable set of

Harsanyi (1974). I instead take a more non-cooperative game theoretic approach, exploring

the SPE in a fully specified negotiation game where agents signal the agreement they would

like to take. Within this strand of literature, Mariotti (1997) has the closest model and also

considers an explicit negotiation protocol. The extensive form of the negotiation protocol

is similar, but the payoff of perpetual disagreement is set to −∞. In this work, Mariotti

(1997) takes an approach close to the strong Subgame Perfect Equilibrium of Rubinstein

(1980). He also imposes a refinement on this subgame perfect type concept based on the

farsighted stable set. Mariotti (1997) does not provide general conditions for his solution

concept, due to the complexity that the history-dependent negotiation entails. He instead

proposes a history-independent version of his solution concept, in line with Harsanyi (1974),

where agents strategies only map from the current proposal to the next proposal, rather

than all possible previous proposals being considered. In this history independent version,

17Shubik (2012) examines the 78 2x2 games which can be induced by strict ordinal preferences, of these 78,
67 allow for the sufficient conditions for outcomes of a C-Negotiated Binding Agreement to be applied. Note
that is only 2 less than the existence of Nash equilibrium in pure strategies. In this sense, these sufficient
conditions apply to more scenarios than initial inspection may suggest.
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Mariotti (1997) provides some necessary conditions for agreement outcomes similar to those

provided in this paper for both Negotiated Binding Agreements and C-Negotiated Binding

Agreements. He also provides sufficient conditions for agreement outcomes for a class of two-

player games with conditions on the Pareto Frontier, similarly using a notion of individual

punishments.

Chwe (1994); Xue (1998); Ray and Vohra (2015, 2019) also consider versions of the

farsighted stable set. The closest with respect to my paper is Ray and Vohra (2019), which

games with transferable utility, and defines the notion of the maximal farsighted stable set,

which additionally requires a subgame perfect-like condition, imposing optimality given

others’ strategies at all histories of the negotiation. They provide general conditions linking

the farsighted stable set as defined in Ray and Vohra (2015) to this concept. I instead take

an approach that looks at general games, rather than a game with transferable utility, and

instead link the concept of C-Negotiated Binding Agreements to an alternative cooperative

game theoretic notion of the β-core of Aumann (1959, 1961). Finding the farsighted stable

set is challenging and some papers have looked at finding the farsighted stable set for a

specific underlying game (Suzuki and Muto, 2005; Nakanishi, 2009).

Other papers have also proposed fully non-cooperative models of negotiation over bind-

ing agreements for normal form games, based on a dynamic game of negotiation. Kalai

(1981) looks at a fully specified model of negotiation by proposing a non-cooperative ex-

tensive form game. In that model, agents propose an individual action in the underlying

game. If an agent changes their proposal within a period then they are no longer permitted

to change their proposal again. The process ends at time t with the proposal profile pro-

posed in that period. Kalai (1981) looks at the perfect equilibria of Selten (1988) and shows

that only cooperation can be sustained in the 2-player prisoners’ dilemma game. Nishihara

(2022) has extended this to an n-player prisoners’ dilemma, maintaining Kalai’s negotiation

protocol. The philosophy of Kalai’s approach is similar to that of this paper, where agents

negotiate over the agreement and can do so by proposing their own action. Bhaskar (1989)

examines a model of pre-play agreement over a symmetric two-player Bertrand game. In a

similar sense to this model, agents make proposals of the prices they will take, and have the

opportunity to revise their proposals sequentially. Confirmation requires one agent not to

change their proposal after seeing the others. Bhaskar (1989) looks at the perfect equilibria

of such an agreement game and concludes that only the monopoly price can be sustained.

The closest model in the non-cooperative literature is that of Harstad (2022), who proposes

a “pledge-and-review” bargaining protocol, similar to the one in this paper, for public goods

games. In his model, Harstad (2022) shows that when agents confirm by default, and dis-

counting is hyperbolic, a folk theorem remains for the subgame perfect equilibria outcomes

of this game. When considering stationary subgame perfect equilibria, each agent’s pledge
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must be the result of maximising some weighted Nash product. However, the weights used

by each agent may differ, and therefore many inefficient equilibria arise despite this. In

my work, I instead consider a more general class of games and consider and alternative

refinement of SPE. Note that by the construction of the equilibria, imposing stationarity

does not substantially change sufficiency.

A number of papers have provided a more cooperative game theoretic approach for the

agreements that can be made for games, for instance Strong Nash equilibrium (Aumann,

1959) and the β-core (Aumann, 1959, 1961). In my paper, C-Negotiated Binding Agreement

outcomes lie somewhere between the β-core and Strong Nash equilibrium and is fully backed

by a negotiation procedure. Given this, my paper can also be seen in the light of the Nash

program pointed to in Nash (1953), as the necessary and sufficient conditions C-Negotiated

Binding Agreement outcomes can be seen as a perturbed version of the β-core.

There are a number of other related papers that take the cooperative game theoretic

approach. Notably, the γ-core (Chander and Tulkens, 1997). Chander (2007) provides

further justification for the γ-core by showing it is an equilibrium to an infinitely repeated

game where agents decide whether to cooperate or not in each round. Chander and Wooders

(2020) define a notion of coalitional Subgame Perfect Equilibrium for underlying games with

transferable utility, where a coalition’s deviation payoff is with respect to the best Subgame

Perfect Equilibrium assuming all other players act without cooperation. A number of papers

have also proposed notions of rationalizability for coalitions in a cooperative sense, for

instance Herings et al. (2004); Ambrus (2006, 2009); Grandjean et al. (2017), which iterative

elimination of coalitionally irrational actions can be seen as, but are all distinct. A strand

of literature abstracts from the negotiation process within a group and takes a cooperative

perspective, focusing on Pareto undominated actions that prevent new groups from breaking

and forming (Ray and Vohra, 1997; Diamantoudi and Xue, 2007).

A number of papers consider a form of communication for equilibrium selection (Bern-

heim et al. (1987); Farrell and Maskin (1989); Bernheim and Ray (1989); Rabin (1994),

etc.). My paper is related in the sense that agents can communicate via the negotiation

procedure, proposing the agreement action they would like, to select the outcome of the

underlying game that will be played. However, the perspective is different, as these concepts

are about refining a given set of non-binding agreements represented by the (potential mix

over) SPE or Nash Equilibria of an underlying game, whereas I allow agents to make a

binding agreement of potentially any outcome.

In the contracting literature, the closest work is of Jackson and Wilkie (2005); Yamada

(2003); Ellingsen and Paltseva (2016) who all propose model allowing agents all have a

strategic input on the structure of the contract over an underlying strategic environment.
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In a similar way, Negotiated Binding Agreements allows for all agents to have a strategic

input on the action they will agree to in the underlying game. On the other hand, Kalai

et al. (2010), Peters and Szentes (2012) and Tennenholtz (2004) all consider the possibility

of all agents proposing contracts surrounding their own play in an underlying game, where

these contracts can be a function of the contracts of others. This allows agents to specify

reactions to deviations in full, and can allow for these to be fully specified at a higher level

also. In contrast to these, my paper is requires that agents are required to only propose

actions they could agree to, whereas these papers allow contracts to specify actions in the

contract that would never be the result of equilibrium. Inefficiency persists, but with a

novel lower bound.

The way payoffs are defined for perpetual disagreement can be seen as similar to the

literature of infinitely repeated games with no discounting (Aumann and Shapley, 1994;

Rubinstein, 1994). The individual punishment results within the paper are also similar

to player-specific punishment is used in infinitely repeated games (Fudenberg and Maskin,

1986; Abreu et al., 1994). The sufficient conditions I use are more restrictive as player-

specific punishment only requires that their punishments’ provide them an individually

rational payoff and they prefer to punish rather than be punished. In contrast, I also

require that individuals are best responding to their punishment in the underlying game.

These are used as there are no further rewards from following their punishments, which are

held in the continuation of an infinitely repeated game. Therefore it must be the case that

agents cannot improve the utility they would get facing the constant punishment of others,

requiring that they best respond.

7 Conclusion

This paper has developed a new theoretical framework for understanding how agents negoti-

ate over actions in strategic settings, and how inefficiencies can arise even when agreements

are binding, information is complete, and there is no cost of delay. The model introduces a

simple yet powerful negotiation protocol in which agents must confirm proposals to reach

a binding agreement, and the analysis is conducted through the lens of subgame perfect

equilibrium.

The central insight is that inefficiencies emerge endogenously due to two key structural

features of negotiation: (i) each agent retains control over their own action, and (ii) any

agreement must be mutually confirmed. These features mean that even in a setting with

full strategic rationality, inefficiencies can persist—not due to external frictions, but as a

consequence of the strategic interdependence built into the negotiation process itself.

In two-player games, I provide a full characterization of the agreement outcomes, show-
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ing that a strategy profile can be sustained in equilibrium if and only if it guarantees each

player at least their individual punishment payoff. For n-player games, a similar logic yields

a set of sufficient conditions, while a novel iterative rationality constraint offers a necessary

condition, significantly narrowing the space of sustainable outcomes. These conditions help

identify when a particular agreement is strategically feasible, and when it is not, based

solely on the structure of the underlying game.

The model is also extended to allow coalitional deviations, introducing the concept of

C-Negotiated Binding Agreements, which generalizes the β-core of cooperative game theory

in a fully strategic setting. While such agreements may eliminate some inefficiencies, they

can also result in non-existence, highlighting the inherent tension between robustness and

feasibility in negotiated outcomes.

Together, these results offer a tractable and robust approach to understanding strategic

agreement formation, and explain why suboptimal agreements frequently arise in practice –

even in an idealised settings. The model speaks directly to real-world inefficiencies observed

in numerous agreements such as trade agreements, climate negotiations, labour bargaining,

and industrial collusion. The formal analysis of these questions is left for future research to

do them justice. This paper shows that, apart from informational or institutional frictions

alone, the strategic structure of negotiation alone limits the scope for efficient cooperation.

A Proofs

Proof of lemma 1: Notice that lim infk→∞ ui(a
k) = (1 − δ)

∑∞
t=1 δ

t−1 lim infk→∞ ui(a
k).

Therefore by continuity of subtraction we have that

lim
δ→1

(1− δ)
∞∑
t=1

δt−1ui(a
t)− lim inf

k→∞
ui(a

k) = lim
δ→1

(1− δ)
∞∑
t=1

δt−1
(
ui(a

t)− lim inf
k→∞

ui(a
k)

)

Note by definition of the lim inf, for all ε > 0 ∃T ∈ N such that ∀t > T we have

that ui(a
t) − lim infk→∞ ui(a

k) > −ε. Therefore, for any such T , we may decompose the

expression as follows.
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lim
δ→1

(1− δ)
∞∑
t=1

δt−1
(
ui(a

t)− lim inf
k→∞

ui(a
k)

)
= lim

δ→1
(1− δ)

T∑
t=1

δt−1
(
ui(a

t)− lim inf
k→∞

ui(a
k)

)
+ · · ·

· · ·+ lim
δ→1

(1− δ)
∞∑

t=T+1

δt−1
(
ui(a

t)− lim inf
k→∞

ui(a
k)

)

= lim
δ→1

(1− δ)
∞∑

t=T+1

δt−1
(
ui(a

t)− lim inf
k→∞

ui(a
k)

)

> lim
δ→1

(1− δ)
∞∑

t=T+1

δt−1(−ε) = lim
δ→1
−δT+1ε = −ε

Therefore limδ→1(1 − δ)
∑∞

t=1 δ
t−1 (ui(at)− lim infk→∞ ui(a

k)
)
> −ε ∀ε > 0, concluding

that limδ→1(1− δ)
∑∞

t=1 δ
t−1 (ui(at)− lim infk→∞ ui(a

k)
)
≥ 0 and therefore

By analogy limδ→1(1− δ)
∑∞

t=1 δ
t−1ui(a

t) ≤ lim supk→∞ ui(a
k). �

Proof of Theorem 1:

Sufficiency: Note within this proof I maintain the notation ak to refer to the kth period

proposal in a history h, while I use aj to denote the action profile used in equilibrium as a

punishment for j. Let s∗ be as follows:

1. if h = (a1, ..., ak) is such that there is some j ∈ N , such that ak−1−j = s∗−j((a
1, ..., ak−2))

and either:

(a) akl = s∗l (h\ak−1) ∀l 6= j while akj 6= s∗j (h\ak−1).

(b) or ak−j = aj−j .

then s∗i (h) = aji .

2. s∗i (h) = a∗i otherwise.

First note that from any history the continuation is terminal within two periods and

therefore signalling of agreement is satisfied. Now to show that s∗ is a Subgame Per-

fect Equilibrium of the negotiation game. Suppose that a profitable deviation exists at

a history h ∈ H for i ∈ N . If the deviation does not include some different proposal

within two periods of h it cannot be profitable, as the outcome remains the same. There-

fore any deviation must occur within two periods. Any such deviation, denoted by s′i,

if it does not lead to the same terminal history and therefore cannot be profitable, of

i ∈ N must lead to ai−i for all periods following. Let the terminal history following the

deviation be denoted by (s∗−i, s
′
i|h) = (h, ak, ak+1, ...., at, ...). When (s∗−i, s

′
i|h) ∈ Z ′ let
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(s∗−i, s
′
i|h) = (h, a′,1, a′,2, ..., a((s∗−i, s

′
i|h)), a((s∗−i, s

′
i|h)), a((s∗−i, s

′
i|h)), ...), i.e let the agree-

ment that (s∗−i, s
′
i|h) concludes in be infinitely repeated at the end of the sequence, with

some abuse of notation. However, by construction, it must be that lim supt→∞ u(at) ≤ ui(ai)
and therefore it must be at least weakly worse than any terminal history of the strategy s∗.

Therefore no profitable deviation exists.

Necessity: To see that only such a∗ can be sustained, take any a∗ that is a Nego-

tiated Binding Agreement outcome in the two-player case given by the SPE s∗. Denote

Ã = {a ∈ A|∃h ∈ H s.t. s∗(h) = a}. Note by signalling of agreement these are the only

actions that can be proposed in equilibrium. Therefore s∗−i(h) ∈ Ã−i for all h ∈ H. As

s∗ is an SPE it must be that there is no profitable deviation. Notice that Ui(s
∗|h) ≥

infa−i∈Ã−i
maxai∈Ai ui(ai, a−i). Suppose not Ui(s

∗|h) < infa−i∈Ã−i
maxai∈Ai ui(ai, a−i). It

follows that infa−i∈Ã−i
maxai∈Ai ui(ai, a−i)− Ui(s∗|h) > 0. Consider a deviation to s′i such

that s′i(h
′) = s∗i (h

′) for all h′ such that h = (h′, h′′) while s′i(h
′) is such that ui((s

′
i, s
∗
−i)(h

′)) =

maxai∈Ai ui(ai, s
∗
−i(h

′)) for all other histories. Suppose such a deviation leads to perpetual

disagreement. Denote the sequence induced by such a strategy by z′ = (a1, a2, ...., at, ...).

Notice that ui(a
t
i, a

t
−i) = maxai∈Ai ui(ai, a

t
−i). Note that therefore

ui(a
t
i, a

t
−i) ≥ inf

a−i∈{a′−i∈A−i|a′−i=a
k
−i}

max
ai∈Ai

ui(ai, a−i)

By definition:

Ui(si, s
∗
−i|h) ≥ lim inf

t→∞
ui(a

t)

≥ lim inf
t→∞

inf
a−i∈{a′−i∈A−i|a′−i=ak

−i}
max
ai∈Ai

ui(ai, a−i)

= inf
a−i∈{a′−i∈A−i|a′−i=ak

−i}
max
ai∈Ai

ui(ai, a−i)

≥ inf
a−i∈Ã−i

max
ai∈Ai

ui(ai, a−i)⇒ Ui(si, s
∗
−i|h) > Ui(s

∗|h)

therefore it cannot be that s∗ is an SPE if the deviation ends in perpetual disagreement.

The argument for agreement is direct from the definition.

Therefore it must be that Ui(s
∗|h) ≥ infa−i∈Ã−i

maxai∈Ai ui(ai, a−i). As all profiles in

Ã are agreed upon, therefore ∀ã ∈ Ã ui(ã) ≥ infa−i∈Ã−i
maxai∈Ai ui(ai, a−i). Therefore

∃a′−i ∈
¯̃A−i, where ¯̃A−i is the limit points of Ã−i such that ui(ã) ≥ maxai∈Ai ui(ai, a

′
−i).

As this holds for all ã ∈ Ã it follows that ui(a
′) ≥ maxai∈Ai ui(ai, a

′
−i) therefore ui(a

′) =

maxai∈Ai ui(ai, a
′
−i). therefore ∃ai ∈ ¯̃A such that ui(ã) ≥ ui(a

i) = maxai∈Ai ui(ai, a
i
−i).

Notice that: ui(ã) ≥ ui(a
i) for all ¯̃A and therefore ui(a

j) ≥ ui(a
i) and ui(a

∗) ≥ ui(a
i).

Therefore such a profile of action profiles must exist for a∗ to be supported. �

Proof of theorem 3: Suppose not, for some history h′ ∈ H we have that si(h
′) = ai.
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By consistency of agreement signalling it follows that there exists some h ∈ H such that

ai(s|h) = ai. Therefore it must be that Ui(s|h) = ui(a(s|h)) ≤ supa′−i∈A−i
ui(ai, a

′
−i). Take

ε = inf
a′−i∈A−i

sup
a′i∈Ai

ui(a
′
i, a
′
−i)− ui(a(s|h)) > 0

Take a function ãi : A−i → Ai such that ui(ãi(a−i), a−i) > supa′i∈Ai
ui(a

′
i, a−i) − ε. Con-

sider a deviation s′i(h
′′) = ãi(s−i(h

′′)) for all h′′ ∈ H. It follows that: Ui(s
′
i, s−i|h) ≥

infa−i∈A−i ui(ãi(a−i), a−i) > infa−i∈A−i supa′i∈Ai
ui(a

′
i, a−i)−ε. Therefore it follows that Ui(s

′
i, s−i|h) >

ui(a(s|h)) = Ui(s|h), concluding that a profitable deviation exists and therefore it cannot

be that s is a Subgame Perfect Equilibrium of the negotiation game. By consistency of

agreement signalling, we conclude that si(h) /∈ Di(A−i) for any h ∈ H.

Now suppose by contradiction that, for all j ∈ N sj(h
′) ∈ Ãkj ∀k < m and h′ ∈ H

but for some i ∈ N sj(h
′) = ai /∈ Ãm+1

j for some h′ ∈ H. By consistency of agreement

signalling it must be that a) s−i(h
′) ∈ Ãmi for all h′ and b) by consistency of agreement

signalling there is some h ∈ H for which ai(s|h) = ai. Therefore it must be that Ui(s|h) =

ui(a(s|h)) ≤ supa′−i∈Ãm
−i
ui(ai, a

′
−i). Take ε = infa′−i∈Ãm

−i
supa′i∈Ai

ui(a
′
i, a
′
−i)−ui(a(s|h)) > 0.

Take a function ãi : Ãm−i → Ai such that ui(ãi(a−i), a−i) > supa′i∈Ai
ui(a

′
i, a−i) − ε for all

a−i ∈ Ãm−i. Consider a deviation s′i(h
′′) = ãi(s−i(h

′′)) for all h′′ ∈ H. It follows that:

Ui(s
′
i, s−i|h) ≥ infa−i∈Ãm

−i
ui(ãi(a−i), a−i) > infa−i∈Ãm

−i
supa′i∈Ai

ui(a
′
i, a−i) − ε. Therefore it follows

that Ui(s
′
i, s−i|h) > ui(a(s|h)) = Ui(s|h), concluding that a profitable deviation exists and

therefore it cannot be that s is a Subgame Perfect Equilibrium of the negotiation game. By

consistency of agreement signalling, we conclude that si(h) /∈ Di(Ã
m
−i) for any h ∈ H and

therefore si(h) ∈ Ãk+1
i , a contradiction.�

Proof of lemma 2: Note that B0 = Ã0. Now we will show that Bk ⊆ Ãk for all

k ≥ 0. By the inductive hypothesis suppose that Bm ⊆ Ãm for all m < k. Now notice

that for any ai ∈ Bk
i we have that there is some a−i ∈ Bk−1

−i ⊆ Ãk−1−i such ui(ai, a−i) ≥
ui(a

′
i, a−i) for all a′i ∈ Ai. It follows that ui(ai, a−i) ≥ infa′−i∈B

k−1
−i

supa′i∈Ai
ui(a

′
i, a
′
−i) ≥

infa′−i∈Ã
k−1
−i

supa′i∈Ai
ui(a

′
i, a
′
−i). Further,

ui(ai, a−i) ≤ sup
a′′−i∈Bk

−i

ui(ai, a
′′
−i) ≤ sup

a′′−i∈Ãk
−i

ui(ai, a
′′
−i)

and therefore we conclude that if ai ∈ Bk
i then ai ∈ Ãki , concluding the proof. �

Proof of theorem 4: Suppose not, then there is some i ∈ N and h ∈ H such that

that infa′−i∈IIR−i
supa′i∈Ai

ui(a
′
i, a
′
−i) > Ui(s

∗|h). It must be that a) s∗ is a Subgame Perfect

Equilibrium of the negotiation game and b) by theorem 3 it must be that s∗−i(h) ∈ IIR−i for

all h ∈ H. Let ε = infa′−i∈IIR−i
supa′i∈Ai

ui(a
′
i, a
′
−i)− Ui(s∗|h) > 0. Construct ãi : IIR−i →

Ai such that ui(ãi(a−i), a−i) ≥ supai∈Ai
ui(ai, a−i) − ε

2 for all a−i ∈ IIR−i. Consider a
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deviation to s′i(h
′) such that s′i(h

′) = ã(s∗−i(h
′)) for all h′ ∈ H at the history h. It follows

that:

Ui(s
′
i, s
∗
−i|h) ≥ inf

a−i∈IIR−i

ui(ãi(a−i), a−i) = inf
a−i∈IIR−i

sup
ai∈Ai

ui(ai, a−i)−
ε

2

=
infa−i∈IIR−i supai∈Ai

ui(ai, a−i) + Ui(s
∗|h)

2
> Ui(s

∗|h)

A contradiction, as therefore s∗ is not a Subgame Perfect Equilibrium of the negotiation

game. �

Proof of lemma 3: As a∗ is a strong Nash equilibrium, it follows that @C ∈ 2N\{∅}, a′C ∈
AC such that ui(a

′
C , a

∗
−C) > ui(a

∗) for all i ∈ C. Therefore a∗ is not coalitionally irrational.

Now suppose that a∗ ∈ Ãm(C) for all m < k. Notice that by the same statement this implies

that a∗ ∈ Ãm+1(C). This implies that a∗ ∈ ICIR(C) for all C. �

Proof of theorem 5: Suppose not, for some history h′ ∈ H we have that sC(h′) = aC .

By coalitional signalling of agreement it follows that there exists some h ∈ H such that

aC(s|h) = aC . Therefore it must be that Ui(s
∗|h) = ui(a(s∗|h)) ≤ supa′−C∈A−C

ui(aC , a
′
−C)

for all i ∈ C. By definition of aC being not coalitionally rational, there exists a function a′C :

A−C → AC such that infa−C∈A−C
ui(a

′
C(a−C), a−C) > supa′−C∈A−C

ui(aC , a
′
−C). Consider a

deviation of C at history h such that sC(h′) = a′C(s−C(h′)) for all h′ ∈ H. It follows that

Ui(s
′
C , s

∗
−C |h) ≥ infa−C∈A−C

ui(a
′
C(a−C), a−C) > supa′−C∈A−C

ui(aC , a
′
−C) ≥ Ui(s∗|h) for all

i ∈ C. Concluding that s∗ is not a C-Subgame Perfect Equilibrium.

Now suppose by contradiction that s(h′) ∈ Ãk(C) ∀k < m and h′ ∈ H but s(h′) = a /∈
Ãm+1(C) for some h′ ∈ H. By definition, it must be that a ∈

⋃
C∈C [DC(Ãm−1(C)−C)×A−C ].

Therefore it must be that aC ∈ DC(Ãm−1(C)−C) for some C ∈ C. By coalition agreement

signalling we have that ∃h ∈ H such that aC = a∗C(s∗|h). By definition of coalition rational-

ity given Ãm−1(C)−C , as aC ∈ DC(Ãm−1(C)−C) there must be some that there is some a′C :

Ãm−1(C)−C such that infa−C∈Ãm−1(C)−C
ui(a

′
C(a−C), a−C) > supa′−C∈Ãm−1(C)−C

ui(aC , a
′
−C).

Consider a deviation of C at history h such that sC(h′) = a′C(s−C(h′)) for all h′ ∈ H. It

follows that:

Ui(s
′
C , s

∗
−C |h) ≥ inf

a−C∈Ãm−1(C)−C

ui(a
′
C(a−C), a−C) > sup

a′−C∈Ãm−1(C)−C

ui(aC , a
′
−C)

Therefore Ui(s
′
C , s

∗
−C |h) > Ui(s

∗|h) for all i ∈ C. Concluding that s∗ is not a C-Subgame

Perfect Equilibrium of the negotiation game. A contradiction. �

Proof of theorem 6: Suppose this is not the case. There is some C ∈ C a′C :

[ICIR(C)]−C → AC such that infa−C∈[ICIR(C)]−C
ui(a

′
C(a−C), a−C) > Ui(s

∗|h) for all i ∈ C.

It must be that s∗ is a C-Subgame Perfect Equilibrium of the negotiation game, and therefore
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there cannot exist a profitable deviation for C. Notice that s∗i (h) ∈ [ICIR(C)]i for all i ∈ N .

Consider a joint deviation from coalition C such that s′C(h) = a′C(s∗−C(h)) for all h ∈ H.

By the definition of the utilities that this can induce, it is clear that: Ui(s
′
C , s

∗
−C |h) ≥

infa−C∈[ICIR(C)]−C
ui(a

′
C(a−C), a−C) for all i ∈ C, and therefore ui(s

′
C , s

∗
−C |h) > Ui(s

∗|h)

for all i ∈ C. In conclusion, s∗ cannot be a C-Subgame Perfect Equilibrium.�

Proof of theorem 7: Consider the following strategy:

1. if h = (a1, ..., ak) is such that there is some C ∈ C, such that ak−1−C = s∗−C((a1, ..., ak−2))

and either akl = s∗l (h\ak−1) ∀l /∈ C while akj 6= s∗j (h\ak−1) for all j ∈ C or ak−C = aC−C
then s∗i (h) = aCi .

2. s∗i (h) = a∗i otherwise.

By definite, at no history can N deviate as a coalition to improve all their utilities

if N ∈ C. Now assume that some other coalition C ∈ C has a profitable deviation. If

aj 6= s∗j (h) for all j ∈ C, then it cannot be profitable as it leads to a history that induces

the aC−C for all periods. If aj 6= s∗j (h) for all j ∈ B, where B ⊂ C, while a∗j = s∗j (h). Then

it must induce a path such that either a member of B is worse off, or further deviations

within C take place. Either way, it cannot be that this is a profitable deviation.

As all histories end within 2 periods we satisfy consistency of coalition agreement sig-

nalling and therefore we have a C-SPE leading to a C-Negotiated Binding Agreement out-

come a∗.�
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