
A Online Appendix

A.1 An Example of a non-maximally safe acceptability correspondence

that still satisfies all properties of comonotonicity

To see that we may have a non-maximally safe acceptability correspondence that still

satisfies all properties of comonotonicity, consider the following example:

Figure 4: 1, 2 and 3’s preference orderings over the three alternatives, at the three states,
L, M , and H. For each state, the allocation chosen by SCF f

⇤ in Ex. 6 is indicated by
a square. The acceptability correspondence A from this example is shown by the dotted
lines, and satisfies the conditions of Weak Comonotonicity. Acceptability correspondence
A

⇤ such that A
⇤(✓) = {a, b} ✓ A(✓) is maximally safe, and is represented by the dashed

lines in the figure.

Example 6 Let everything be the same as the leading example, except at state L player

3’s preference ordering is c � a � b. Let the SCF be f
⇤(L) = f

⇤(H) = a, f⇤(M) = b,

with A(L) = A(M) = {a, b}, and A(H) = {a, b, c}, as in the leading example. First

note that, while it can be shown that f
⇤ can be Safely implemented with respect to

A, this acceptability correspondence is not maximally safe, since f
⇤ can also be safely

implemented with respect to the subcorrespondence A⇤, such that A⇤(✓) = {a, b} for all ✓.

Figure A.1 summarizes as usual agents’ preferences, the SCC, and the two acceptability

correspondences. Nonetheless, we show that (A, f⇤), in this case, satisfies both conditions

for comonotonicity. Part 1 of Def. 5 can be checked following the same logic as in the

earlier examples (and it also follows from Proposition 1). To see that part 2 of Def. 5

also holds, note that it cannot be violated due to moving from states L or M to any other

state, as A(L) = A(M) ✓ A(H), and therefore the condition is satisfied regardless. To see

there is no violation moving from state H to state L, notice that relative to f
⇤(H) = a,

an acceptable allocation at H, c, moves up in the ranking of player 3 from state H to L.

Therefore we conclude that A(H) 6✓ A(L) does not violate part 2 of Def. 5. To see that

there is no violation moving from state H to state M , notice that relative to f
⇤(H) = a,

an acceptable allocation at H, namely b, has moved up in player 1’s ranking from state H

to state M . With this, we also conclude that we do not violate part 2 of Def. 5 by setting
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A(H) 6✓ A(L). Hence, A is not maximally safe, and yet it is comonotonic with respect to

f
⇤. ⇤

A.2 Proofs from Section 5.1 and 5.2

Proof of Result 1: Suppose for somem?,✓ we have that x 2 g(Bk�1(m?,✓))\argmaxy2A(✓) ui(y, ✓
0)

8i 2 N . As x 2 g(Bk�1(m?,✓)) it follows that 9Dk�1 ⇢ Nk�1,mDk�1 2 MDk with

g(mDk�1 ,m
?,✓
�Dk�1

) = x.

Any unilateral deviation leads to an allocation in A(✓) by definition of (A, k)-Safe

implementation and less than k agents are reporting a non-Equilibrium message. Therefore

mDk�1 ,m
?,✓
�Dk�1

is a Nash Equilibrium at ✓0 and therefore g(mDk�1 ,m
?,✓
�Dk�1

) 2 F (✓0). ⌅
Proof of Result 2: Let each agent i 2 N announce an outcome that is acceptable

at some state, a state, and a natural number. Thus Mi =
S

✓002⇥A(✓00) ⇥ ⇥ ⇥ N, with a

typical element mi = (xi, ✓i, ni). Let g(m) be as follows:

(i) If mi = (x, ✓, ni) 8i 2 N and x 2 F (✓) then g(m) = x

(ii) If mi = (x, ✓, ni) 8i 2 N\{j} with x 2 F (✓) and mj = (y, ·, ·) then

g(m) =

8
<

:
y if y 2 Lj(x, ✓) \A(✓)

x if y 62 Lj(x, ✓) \A(✓)

(iii) mi = (x, ✓, ·), x 2 F (✓), 8i 2 N\D, 2  |D| < n
2 such that 8j 2 D mj 6= (x, ✓, ·)

g(m) =

8
<

:
x
i⇤ if D⇤(✓, D) 6= ;

x if D⇤(✓, D) = ;

where

D
⇤(✓, D) = {j 2 D|xj 2 A(✓)}

and i
⇤ = min{i 2 D

⇤(✓, D)|ni � n
j

j 2 D
⇤(✓, D)}

(iv) Otherwise, let g(m) = x
i⇤ where i

⇤ = min{i 2 N |ni � n
j 8j 2 N}

From here we can complete the proof in three steps: showing that all x 2 F (✓) are

induced by a Nash Equilibrium at ✓, showing that there is no y /2 F (✓) such that y is

induced by an Equilibrium at ✓, and finally showing that the mechanism is indeed (A, k)-

Safe.

Step 1. First to show that all x 2 F (✓) are induced by Nash Equilibria at ✓.

Consider m
⇤ such that m

⇤
i = (x, ✓, ·), 8i 2 N where x 2 F (✓) at the state ✓. To be a

Nash Equilibrium we need to rule out the possibility that 9j 2 N,m
0
j 2 Mj such that

uj(g(m⇤
�j ,m

0
j), ✓) > uj(g(m⇤), ✓).
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However, g(m⇤
�j ,m

0
j) = y must be such that y 2 Lj(x, ✓) by rule (ii), it is not possible

that uj(y, ✓) > uj(x, ✓). Therefore it must be that m
⇤ is a Nash Equilibrium leading to

x 2 F (✓).

Step 2. We will now show that no m
⇤ a Nash equilibrium at ✓ that is a such that

g(m⇤) = y /2 F (✓). We proceed by showing that in each section of the rule, no Nash

equilibrium leads to y /2 F (✓).

Case 1. Suppose m⇤ is a Nash equilibrium in rule i) at state ✓ such that g(m⇤) = y /2
F (✓). It must be thatm⇤

i = (y, ✓0, ni) for all i 2 N and, necessarily as y /2 F (✓), that ✓0 6= ✓.

Given this, it must be that there is no profitable deviation and therefore, as deviations

may only lead to rule (ii), it must be that for all i 2 N , for any z 2 Li(y, ✓0) \ A(✓0) we

have that z 2 Li(y, ✓), as there is no profitable deviation to report mi = (z, ✓, ·) inducing
outcome z from rule (ii). With this, Li(y, ✓0) \ A(✓0) ✓ Li(y, ✓) \ A(✓0). Therefore, by

strong comonotonicity, we have that y 2 F (✓), a contradiction.

Case 2. Now suppose that there is a Nash equilibriumm
⇤, which is in rule (ii), at state

✓ such that g(m⇤) = y /2 F (✓). It must be that 9j 2 N such that, 8i 2 N\{j} we have

m
⇤
i = (x, ✓0, ni), while m

⇤
j 6= (x, ✓0, ·). For this to be a Nash equilibrium it must be that

there is no incentive for any agent to deviate. If k > 1 a deviation can lead to rule (i), (ii),

or (iii), regardless, as m⇤ is a Nash equilibrium at ✓, no agent i 6= j to wish to change their

report, inducing rule (iii), it must be that y 2 argmaxz2A(✓0) ui(z, ✓). By weak Safe No-

Veto, it must therefore be that y 2 F (✓), a contradiction to y /2 F (✓). For k = 1 we have

that a deviation can lead to rule (i), (ii), or (iv), which in the case of rule (iv) can induce

any outcome. Those that can deviate to impose rule (iv) are all agents other than j. With

this, we have that, as there is no incentive to deviate, that y 2 argmaxz2
S

✓002⇥ A(✓00) ui(z, ✓)

for all i 2 N\{j}. With this, it must be that y 2 argmaxz2A(✓0) ui(z, ✓) for all i 2 N\{j},
and therefore by weak Safe No-Veto we have that y 2 F (✓), a contradiction.

Case 3. Notice that there can be no Nash equilibria within rule (iii). Suppose that m⇤

were a Nash equilibrium in rule (ii) at state ✓. Suppose that |D| < bn2 c and m
⇤
i = (x, ✓0.·)

for all agents i /2 D. Given this, it must be that there is no profitable deviation for any

agent. As there exists a message for any player that leads to any allocation in A(✓0) via

rule (iii), we conclude that y 2 argmaxz2A(✓0) ui(z, ✓) for all i 2 N . Therefore it must be

that no unanimity in A is violated. Now suppose that |D| = bn2 c. For there to be no

profitable deviation, it must be that for 8i 2 D, y 2 argmaxz2A(✓0) ui(z, ✓). For all agents

in i 2 N\D it must be that for any x 2 X ◆ A(✓0), we have that ui(y, ✓) � ui(x, ✓), as

there is no profitable deviation. Given this, we conclude that y 2 argmaxz2A(✓0) ui(z, ✓)

for all i 2 N , and therefore no unanimity in A is violated.

Case 4. Note that there can be no Nash equilibria within rule (iv). To see this,

suppose that m⇤ is a Nash equilibrium at state ✓ that falls within rule (iv), with g(m⇤) =

y. Notice that any agent can deviate to remain within rule (iv), inducing any out-

come that is acceptable at any state. Therefore for y to be a Nash equilibrium it
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must be that y 2 argmaxz2
S

✓002⇥ A(✓00) ui(z, ✓) for all i 2 N . Therefore it follows that

y 2 argmaxz2A(✓0) ui(z, ✓) for some ✓
0 2 ⇥ and for all i 2 N . Therefore no unanimity in A

is violated.

Step 3.

We will now show that all Nash equilibria are safe. To do so, we will again split it into

cases. By the previous analysis, recall that if we maintain No Unanimity in A we know

that there can only be equilibria in rule (i) or rule (ii), and therefore we need only focus

on the safety of those equilibria in rules (i) and (ii).

Case 1. If m
⇤ is a Nash equilibrium at ✓ that falls into rule (i) it must be that

m
⇤
i = (y, ✓0, ni). By the previous analysis, we know that y 2 F (✓). If ✓0 = ✓, we conclude

that safety is satisfied as k deviations can only lead to rule (ii) or (iii). Either way, we

remain in A(✓). Now suppose that ✓0 6= ✓ while m⇤ is a Nash equilibrium at ✓. Notice that

regardless, k deviations must lead to remaining within A(✓0) via rule (ii) or (iii). By the

previous analysis, we know that this only occurs when Li(y, ✓0) \A(✓0) ✓ Li(y, ✓) \A(✓0)

for all i 2 N . Given this, A(✓0) ✓ A(✓) must hold for strong comonotonicity to be satisfied.

Given that A(✓0) ✓ A(✓), we conclude that any deviation from such a Nash equilibrium

must remain in A(✓0), and therefore A(✓), maintaining safety.

Case 2. Now suppose that m
⇤ is a Nash equilibrium at ✓ that falls into rule (ii). It

must be that 8i 6= j m
⇤
i = (x, ✓0, ni) while m

⇤
j 6= (x, ✓0, ni). Notice that k deviations can

lead to rule (i), rule (ii) or rule (iii), as k < bn2 c � 1. By the structure of the mechanism,

even with k, in the extreme case where n
2 � 2 misreports from m

⇤, it remains that the

majority of agents are reporting mi = (x, ✓0, ni). With this, any k deviations must lead

to A(✓0). Notice that for this to be a Nash equilibrium at ✓, we therefore require that

g(m⇤) = y 2 argmaxz2A(✓0) ui(z, ✓) for all i 6= j. With this, by Weak Safe No-Veto, we

have that A(✓0) ✓ A(✓). As k deviations remain in A(✓0) it is also true that k deviations

remain in A(✓). Therefore Safety is upheld. ⌅
Proof of Result 3: Let each agent i 2 N announce an outcome, a state, and a

natural number. Thus Mi = X⇥⇥⇥N, with a typical element mi = (xi, ✓i, ni). Let g(m)

be as follows:

(i) If mi = (x, ✓, ni) 8i 2 N and x 2 F (✓) then g(m) = x

(ii) If mi = (x, ✓, ni) 8i 2 N\{j} with x 2 F (✓) and mj = (y, ·, nj) then

g(m) =

8
<

:

nj

nj+1y +
1

nj+1x if y 2 Lj(x, ✓) \A(✓)

x ify 62 Lj(x, ✓) \A(✓)
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(iii) if mi = (x, ✓, ·), x 2 F (✓), 8i 2 N\D, 2  |D|  n
2 such that 8j 2 D mj 6= (x, ✓, ·)

g(m) =

8
>>>><

>>>>:

P
y2A(✓)

1
|A(✓)|+

P
k2D⇤(✓,D) n

k y + ...

+...
P

j2D⇤(✓,D)
nj

|A(✓)|+
P

k2D⇤(✓,D) n
kx

j if D⇤(✓, D) 6= ;
P

y2A(✓)
1

|A(✓)|y if D⇤(✓, D) = ;

where D
⇤(✓, D) = {j 2 D|xj 2 A(✓)}.

(iv) Otherwise, let g(m) =
P

x2X
1

|X|+
P

j2N nj x+
P

i2N
1

|X|+
P

j2N nj x
i.

From here we can complete the proof in three steps: showing that all x 2 F (✓) are

induced by a Nash Equilibrium at ✓, showing that there is no y /2 F (✓) such that y is

induced by an Equilibrium at ✓, and finally showing that the mechanism is indeed (A, k)-

Safe.

Step 1. First to show that all x 2 F (✓) are induced by Nash Equilibria at ✓.

Consider m
⇤ such that m

⇤
i = (x, ✓, ·), 8i 2 N where x 2 F (✓) at the state ✓. To be a

Nash Equilibrium we need to rule out the possibility that 9j 2 N,m
0
j 2 Mj such that

uj(g(m⇤
�j ,m

0
j), ✓) > uj(g(m⇤), ✓).

By rule (ii), the only way that g(m⇤
�j ,m

0
j) 6= x, i.e. not to give the deterministic

allocation x, it must be that it puts positive weight on x and on one other allocation

y 2 Lj(x, ✓) \A(✓). Given that y 2 Lj(x, ✓), there is no profitable deviation.

Step 2. We will now show that no m
⇤ a Nash equilibrium at ✓ that is such that

g(m⇤) /2 F (✓), i.e. no Nash equilibrium gives anything but the deterministic allocations of

F (✓). We proceed by showing that in each section of the rule, no Nash equilibrium leads

to any y /2 F (✓), or any probabilistic allocation.

Case 1. Suppose m⇤ is a Nash equilibrium in rule i) at state ✓ such that g(m⇤) = y /2
F (✓). It must be thatm⇤

i = (y, ✓0, ni) for all i 2 N and, necessarily as y /2 F (✓), that ✓0 6= ✓.

Given this, it must be that there is no profitable deviation, and therefore, as deviations

may only lead to rule (ii), it must be that for all i 2 N , for any z 2 Li(y, ✓0) \ A(✓0) we

have that z 2 Li(y, ✓), as there is no profitable deviation to report mi = (z, ✓, ·) inducing
outcome z from rule (ii). With this, Li(y, ✓0) \ A(✓0) ✓ Li(y, ✓) \ A(✓0). Therefore, by

strong comonotonicity, we have that y 2 F (✓), a contradiction.

Case 2. Now suppose that there is a Nash equilibrium m
⇤, which is in rule (ii), at

state ✓ such that g(m⇤) /2 F (✓). It must be that 9j 2 N such that, 8i 2 N\{j} we have

m
⇤
i = (x, ✓0, ni), while m

⇤
j 6= (x, ✓0, ·). We split this possibility into sub-cases for clarity.

Case 2.a. First consider the case that g(m⇤) = x 2 F (✓0). It must therefore be that

for all i 6= j there is no profitable deviation. Given this, we must have that ui(x, ✓) �
maxz2A(✓0)\{x} ui(z, ✓) by the fact a deviation to announce an arbitrarily high n

i, therefore,

inducing a probabilistic outcome putting almost probability 1 on their most preferred

outcome z. Further, for j to have no profitable deviation we have that it must be that there
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is no y 2 Lj(x, ✓0)\A(✓0) such that uj(y, ✓) > uj(x, ✓). Therefore for all y 2 Lj(x, ✓0)\A(✓0)

we have that uj(x, ✓) � uj(y, ✓), and therefore it is the case that Lj(x, ✓0) \ A(✓0) ✓
Lj(x, ✓) \ A(✓0). Further, we have that Li(x, ✓) \ A(✓0) = A(✓0) for all i 6= j. With this

Li(x, ✓0) \A(✓0) ✓ Li(x, ✓) \A(✓0) for all i 2 N . Therefore by Strong Comonotonicity we

have that x 2 F (✓) and A(✓0) ✓ A(✓).

Case 2.b. Now instead consider the case where g(m⇤) = nj

nj+1y + 1
nj+1x. As for

all ✓, ✓0 2 ⇥, for all z 2 F (✓0) z
0 2 A(✓0), 9i 2 N such that ui(z, ✓) � ui(z0, ✓) 6= 0,

it must be that case that agent is such that ui(y, ✓) � ui(x, ✓) 6= 0. If such agent is j,

i.e. the whistle blower, then a profitable deviation exists to announce either a higher

n
j , putting more weight on y, or announce m

0
j = m

⇤
i for i 6= j, putting weight 1 on

x. Now suppose that ui(y, ✓) � ui(x, ✓) 6= 0 for i 6= j, while uj(y, ✓) � ui(x, ✓) = 0.

Firstly, suppose that ui(y, ✓) > ui(x, ✓). Notice that 8✏ > 0 9ni 2 N such that ✏ >

|A(✓0)|
|A(✓0)|+ni+nj (ui(y, ✓) � minz2A(✓0) ui(z, ✓)). Therefore, simply rearranging this, we have

that 8✏ > 0 9ni 2 N such that ni+nj

|A(✓0)|+ni+nj ui(y, ✓) +
|A(✓0)|

|A(✓0)|+ni+nj minz2A(✓0) ui(z, ✓) >

ui(y, ✓)� ✏. Given this, we conclude that 8✏ > 0 9ni 2 N such that ni+nj

|A(✓0)|+ni+nj ui(y, ✓) +
P

z2A(✓0)
1

|A(✓0)|+ni+nj ui(z, ✓) > ui(y, ✓)� ✏. Let ✏ = ui(y, ✓)� nj

nj+1ui(y, ✓)�
1

nj+1ui(x, ✓).

By assumption that ui(y, ✓) � ui(x, ✓) > 0 we have that ✏ > 0. With this, 9ni 2 N
such that ni+nj

|A(✓0)|+ni+nj ui(y, ✓)+
P

z2A(✓0)
1

|A(✓0)|+ni+nj ui(z, ✓) >
nj

nj+1ui(y, ✓)+
1

nj+1ui(x) =

ui(g(m⇤), ✓). With this, announcing m
0
i = (y, ✓, ni) induces such an outcome

ui(g(m
0
i,m

⇤
�i), ✓) =

n
j

nj + 1
ui(y, ✓)�

1

nj + 1
ui(x) > ui(g(m

⇤), ✓)

and therefore m
⇤ cannot be an equilibrium. By an analogous argument, there cannot be

an equilibrium if ui(x, ✓) > ui(y, ✓) for some agent, as they can announce an arbitrarily

high n
i and x, putting almost probability 1 on x. Regardless, this m⇤ such that g(m⇤) =

nj

nj+1y +
1

nj+1x cannot be an equilibrium.

Case 3 and 4. Note that there cannot be any equilibria in rule (iii) or rule (iv).

To see this, notice that any agent can announce their most one of their most preferred

outcome from A(✓), in rule (iii), or X in rule (iv), and an integer higher than any other

agent (including themselves before the deviation), and strictly increase their utility by

reducing the probability assigned to their less preferred option. As at least one agent is

not completely indi↵erent between all allocations by No total indi↵erence across F and

A, one such agent always exists.

Step 3. Notice that by the previous analysis, there may on be equilibria in rules (i)

and (ii), therefore we need only check the Safety of such equilibria.

Case 1. Firstly, suppose that m⇤ is a Nash equilibrium in rule (i) at state ✓. By the

previous analysis, we know that it is the case that m⇤
i = (x, ✓0, ·), with x 2 F (✓0). If ✓0 6= ✓,

then, by the previous analysis, we know that Li(x, ✓0)\A(✓0) ✓ Li(x, ✓)\A(✓0) for all i 2 N .

Therefore by Strong Comonotonicity we have that x 2 F (✓) and A(✓0) ✓ A(✓). Now notice

45



that in k deviations from m
⇤, we may only reach A(✓0), via rule (ii), with 1 deviation,

or rule (iii) which can be reached with more than 1 but less than k + 1 deviations. As

k <
n
2 � 1, it is the case that the majority of agents still report m⇤

i , regardless of what the

other k report. Given that A(✓0) ✓ A(✓), it follows that any allocation with k deviations

of m⇤ is still a mix with a support of A(✓). If instead m
⇤ is such that ✓

0 = ✓, Safety is

upheld as k deviations can only lead to stochastic allocations over A(✓). Therefore Safety

is upheld.

Case 2. Now instead suppose m
⇤ is a Nash equilibrium at state ✓ that falls into

rule (ii). It must be that m
⇤
i = (x, ✓0, ·) for all i 6= j and m

⇤
j = (y, ✓00, ·). By the pre-

vious analysis, we know that g(m⇤) = x. If ✓0 6= ✓, again by the previous analysis, we

know that it must be that Li(x, ✓0) \ A(✓0) ✓ Li(x, ✓) \ A(✓0) for all i 2 N . Therefore

by strong comonotonicity we have that x 2 F (✓) and A(✓0) ✓ A(✓). Now notice that in

k deviations we may reach rule (i) inducing x, rule (ii) inducing mixes over allocations in

Lj(x, ✓0)\A(✓0), or rule (iii) for inducing stochastic allocations over A(✓0). Notice that no

other allocations can be reached in k deviations as k <
n
2 � 1, and therefore the majority

of agents would still be reporting m
⇤
i . With this, and by A(✓0) ✓ A(✓), we have that the

mechanism is still considered Safe. Similarly, if ✓0 = ✓, we have that in k deviations we

may reach rule (i) inducing x, rule (ii) inducing mixes over allocations in Lj(x, ✓) \A(✓),

or rule (iii) for inducing stochastic allocations over A(✓). With this, Safety is upheld.⌅

Proof of Result 4: Take the mechanism and logic to be similar to that of theorem

3:

Let each agent i 2 N announce an outcome that is acceptable at some state, a state,

and a natural number. Thus Mi =
S

✓002⇥A(✓00) ⇥ ⇥ ⇥ N, with a typical element mi =

(xi, ✓i, ni). Let g(m) be as follows:

(i) If mi = (x, ✓, ni) 8i 2 N and x 2 F (✓) then g(m) = x

(ii) If mi = (x, ✓, ni) 8i 2 N\{j} with x 2 F (✓) and mj = (y, ✓0, ·) then

g(m) =

8
<

:
y if ui(x, ✓, (x, ✓, ·)) � ui(y, ✓, (y, ✓0, ·)) and y 2 A(✓)

x if either ui(x, ✓, (x, ✓, ·)) < ui(y, ✓, (y, ✓0, ·)) or y /2 A(✓)

(iii) If mi = (x, ✓, ·), x 2 F (✓), 8i 2 N\D, 2  |D| < n
2 such that 8j 2 D mj 6= (x, ✓, ·)

g(m) =

8
<

:
x
i⇤ if D⇤(✓, D) 6= ;

x if D⇤(✓, D) = ;

where

D
⇤(✓, D) = {j 2 D|xj 2 A(✓)}
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and i
⇤ = min{i 2 D

⇤(✓, D)|ni � n
j

j 2 D
⇤(✓, D)}

(iv) Otherwise, let g(m) = x
i⇤ where i

⇤ = min{i 2 N |ni � n
j 8j 2 N}

From here we can complete the proof in three steps: showing that all x 2 F (✓) are

induced by a Nash Equilibrium at ✓, showing that there is no y /2 F (✓) such that y is

induced by an Equilibrium at ✓, and finally showing that the mechanism is indeed (A, k)-

Safe. We will proceed by showing that all Nash Equilibria are contained in rule (i), and

report the correct state, and therefore, in comparison to theorem 3, we may weaken Safe

No-Veto to only Unanimity within all acceptable allocations.

Step 1. First to show that all x 2 F (✓) are induced by Nash Equilibria at ✓.

Consider m
⇤ such that m

⇤
i = (x, ✓, ·), 8i 2 N where x 2 F (✓) at the state ✓. To see

this is a NE, suppose not there is some agent for which there is a profitable deviation m
0
j ,

g(m⇤
�j ,m

0
j) = y must be such that ui(x, ✓, (x, ✓, n)) � ui(y, ✓, (y, ✓0, n)) and y 2 A(✓) (or

it is not profitable) by rule (ii), a contradiction to uj(y, ✓, (y, ✓0, n)) > uj(x, ✓, (x, ✓, n)).

Therefore it must be that m⇤ is a Nash Equilibrium leading to x 2 F (✓).

Step 2. We will now show that no m
⇤ a Nash equilibrium at ✓ that is a such that

g(m⇤) = y /2 F (✓). We proceed by showing that in each section of the rule, no Nash

equilibrium leads to y /2 F (✓).

Suppose m
⇤ is a Nash equilibrium in rule i) at state ✓ such that g(m⇤) = y /2 F (✓).

It must be that m
⇤
i = (y, ✓0, ni) for all i 2 N and, necessarily as y /2 F (✓), that ✓

0 6= ✓.

However, consider a deviation for player i to a report of mi = (y, ✓0, ·). This induces

the outcome y still. By the definition of weak preference for correctness, we have that

ui(y, ✓0, (y, ✓0, ·)) > ui(y, ✓0, (y, ✓, ·)), and therefore a profitable deviation exists. A contra-

diction that m⇤ being an equilibrium.

Suppose that we have an Equilibrium in case (ii) with m
⇤
i = (x, ✓, ni) for all i 6= j

and m
⇤
j = (y, ·, ·). Suppose the true state is ✓

0. For this to be the case, it must be

that no agent has an incentive to deviate. Therefore it must be that g(m⇤) 6= x, as

otherwise j has an incentive to deviate by announcing mj = (x, ✓, nj), and by a preference

for correctness would now be announcing the correct state and / or allocation that the

mechanism implements. Therefore it must be that g(m⇤) = y. However, given this, any

agent i 6= j has the incentive to deviate to mi = (y, ✓0, ni), and therefore leading to

allocation y via rule (iii) or rule (iv). Via the weak preference for correctness, this strictly

increases utility. Therefore there can be no equilibria in rule (ii).

Suppose that the Equilibriumm
⇤ at state ✓0 is in rule (iii), withm

⇤
i = (x, ✓, ·), x 2 F (✓),

8i 2 N\D, 2  |D| < n
2 such that 8j 2 D m

⇤
j 6= (x, ✓, ·). It must be that at least |D| agents

are such that they are either reporting the wrong state or not reporting the allocation that

is being implemented g(m⇤) = y, be that those in D or those in N\D. Given this, consider

one such agent. They may report the allocation y and/or the state ✓0 and an integer higher

than any other agent. To see this does not change the allocation first consider the case
n
2 > |D| > 2. In such a case, we remain in rule (iii) or rule (iv) via this deviation, where
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the deviating agent is announcing the highest integer and therefore y is allocated. Now

consider the case where |D| = 2. First consider g(m⇤) = y = x. Suppose that ✓ 6= ✓
0, then

any agent in N\D may deviate to announce mi = (x, ✓0, ni) with n
i being higher than any

integer announced under m⇤. As this announcement announces the true state, it strictly

increases the utility of i. Therefore it cannot be that m
⇤ is a Nash equilibrium in this

case. Suppose instead that ✓ = ✓
0. Then it must be that those in D are either:

1. Both announcing an allocation not in A(✓), in which case a deviation by either to

mj = (x, ✓, ·) would not change the allocation but would make the report correct,

therefore increasing their utility.

2. One is announcing an allocation in A(✓), while one is not. In which case, there is at

least one who is not announcing x, in which case they can increase their utility by

doing so.

3. Both are announcing allocations in A(✓). If this is the case, if both announce x it

must be that both are announcing ✓
j 6= ✓, and therefore can improve their utility by

announcing mj = (x, ✓, ·), and increase their utility, leading to rule (ii), but keeping

the same allocation. Now suppose that only one is announcing x. It must be that the

other is not, and therefore can increase their utility by announcing x, while keeping

the other parts of the report the same, strictly increasing their utility. If neither is

announcing x, it cannot be that g(m⇤) = x.

Now instead consider g(m⇤) = y 6= x. In such a case, those outside of D may deviate

to announce mi = (y, ✓0, ·), increasing their utility.

Finally, consider the possibility of an equilibrium m
⇤ in rule (iv) at state ✓ leading

to the outcome y. For this to be the case, it must be that there is no incentive to

deviate. Consider the possibility that m
⇤
i 6= (y, ✓, ·) for some i. For this to be the case,

it must be that announcing (y, ✓, ·) and an integer higher than any other announced

under m⇤ would change the allocation, as otherwise, the preference for correctness would

mean a profitable deviation occurs. This can only occur if such a deviation would lead

to rule (iii), i.e. bn2 c � 1 agents are reporting (x, ✓0, ·). Given this, we can deduce that

(x, ✓0, ·) = (y, ✓, ·) and that y 2 F (✓), as otherwise, rule (iv) would dictate the allocation

remains the same, while at least one of those bn2 c � 1 agents could strictly increase their

utility by announcing mj = (y, ✓, ·). With this, the original player i such that m
⇤
i 6=

(y, ✓, ·) has a profitable deviation as they can announce (y, ✓, ·) and some arbitrarily high

n
i, inducing rule (iii), where y is chosen due to i announcing the highest integer and

y 2 F (✓) ✓ A(✓). Therefore it cannot be that m
⇤
i 6= (y, ✓, ·) for any i in any equilibria

in rule (iv). For such equilibria to fall into rule (iv) rather than rule (i), it must be that

y /2 F (✓). However, for there to be no profitable deviation within this rule it must therefore

be that y 2 argmaxx2
S

✓002⇥ A(✓00) ui(x, ✓,mi) for all i 2 N , and therefore by Unanimity

within all Acceptable Allocations we have that y 2 F (✓). ⌅
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